Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'mires'

Category : Article

article id 5173, category Article
Heikki Kurimo. (1983). Surface fluctuation in three virgin pine mires in eastern Finland. Silva Fennica vol. 17 no. 1 article id 5173. https://doi.org/10.14214/sf.a15088
Keywords: peatlands; hydrology; eastern Finland; mires; groundwater table; surface fluctuations; pine mire
Abstract | View details | Full text in PDF | Author Info

Altitude fluctuation of mire surface proportional to that of the groundwater table is presented for three virgin pine mires in Eastern Finland during the growing season 1982. The average amplitude of the surface fluctuation was found to be dependent on the period representing a certain type of weather, being limited to a certain maximum. The average amplitude of the surface fluctuation ranged from 18 to 45 mm; each of the mires followed a fluctuation scale of its own.

The daily fluctuation rates were low, generally 0.5–1 mm. No sudden fluctuation peaks occurred. Regularities in the surface fluctuation were caused by the duration of the period representing continuous sinking or rise of the groundwater table, and magnitude of it. The daily rate of the surface fluctuation related to that of the groundwater table was smaller in the beginning of such period than at the end of the same period. The one-directional rise or sinking of the altitude of the mire surface according to the groundwater table fluctuation is responsible for the autocorrelation of the long-term regression data.

The PDF includes a summary in Finnish.

  • Kurimo, E-mail: hk@mm.unknown (email)

Category : Article

article id 7619, category Article
Carl Johan Westman. (1981). Fertility of surface peat in relation to the site type and potential stand growth. Acta Forestalia Fennica no. 172 article id 7619. https://doi.org/10.14214/aff.7619
Keywords: peatlands; fertility; site classification; sedge mires
Abstract | View details | Full text in PDF | Author Info

Fertility of surface peat from sedge pine mires was studied by measuring several edaphic growth factors: bulk density, volume weight of organic matter, ash content, acidity, electric conductivity, effective cation exchange capacity, degree of base saturation, and total contents of N, P, K, Ca and Mg. The 168 temporal sample plots were situated on virgin sedge mires in different parts of Finland, and the 30 permanent sample plots on two uniform sedge mires.

The results showed that peat bulk density and volume weight of organic matter tend to increase with increasing site quality. Ash content increased gradually in the site series from small sedge mire to the herb-rich sedge mire. The relationship between the total content of macronutrients in peat and the site quality is clear. The importance of bulk density in evaluating the site quality is further emphasized when taking into account its significant correlation to contents of N and P. The soil variables follow the accepted quality gradient of the site series. Consequently, the plant sociologically based site classification seems to reflect satisfactorily the average soil properties. However, the within site variation was significant.

  • Westman, E-mail: cw@mm.unknown (email)

Category : Research article

article id 1462, category Research article
Pekka Punttila, Olli Autio, Janne S. Kotiaho, D. Johan Kotze, Olli J. Loukola, Norbertas Noreika, Anna Vuori, Kari Vepsäläinen. (2016). The effects of drainage and restoration of pine mires on habitat structure, vegetation and ants. Silva Fennica vol. 50 no. 2 article id 1462. https://doi.org/10.14214/sf.1462
Keywords: ecological restoration; ditching; Aichi Biodiversity Target 15; Formicidae; pine bogs and fens; transforming and transformed drained mires; water-table level
Highlights: Mire drainage shifted floristic composition and ant assemblages towards forest communities; Raising the water-table level by ditch filling and the thinning of trees affected mire communities positively already 1–3 years after the start of restoration; The extent of tree cover, the coverage of Sphagnum mosses and the water-table level were major determinants of ant assemblage structure.
Abstract | Full text in HTML | Full text in PDF | Author Info

Habitat loss and degradation are the main threats to biodiversity worldwide. For example, nearly 80% of peatlands in southern Finland have been drained. There is thus a need to safeguard the remaining pristine mires and to restore degraded ones. Ants play a pivotal role in many ecosystems and like many keystone plant species, shape ecosystem conditions for other biota. The effects of mire restoration and subsequent vegetation succession on ants, however, are poorly understood. We inventoried tree stands, vegetation, water-table level, and ants (with pitfall traps) in nine mires in southern Finland to explore differences in habitats, vegetation and ant assemblages among pristine, drained (30–40 years ago) and recently restored (1–3 years ago) pine mires. We expected that restoring the water-table level by ditch filling and reconstructing sparse tree stands by cuttings will recover mire vegetation and ants. We found predictable responses in habitat structure, floristic composition and ant assemblage structure both to drainage and restoration. However, for mire-specialist ants the results were variable and longer-term monitoring is needed to confirm the success of restoration since these social insects establish perennial colonies with long colony cycles. We conclude that restoring the water-table level and tree stand structure seem to recover the characteristic vegetation and ant assemblages in the short term. This recovery was likely enhanced because drained mires still had both acrotelm and catotelm, and connectedness was still reasonable for mire organisms to recolonize the restored mires either from local refugia or from populations of nearby mires.

  • Punttila, Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland E-mail: pekka.punttila@ymparisto.fi (email)
  • Autio, Centre for Economic Development, Transport and the Environment in South Ostrobothnia, P.O. Box 252, FI-65101 Vaasa, Finland E-mail: olli.autio@ely-keskus.fi
  • Kotiaho, University of Jyväskylä, Department of Biology & Environmental Sciences, P.O. Box 35, FI-40014 Jyväskylä, Finland E-mail: janne.kotiaho@jyu.fi
  • Kotze, University of Helsinki, Department of Environmental Sciences, P.O. Box 65, FI-00014, University of Helsinki, Finland E-mail: johan.kotze@helsinki.fi
  • Loukola, University of Oulu, Department of Biology, P.O. Box 3000, FI-90014 Oulu, Finland E-mail: olli.loukola@gmail.com
  • Noreika, University of Helsinki, Department of Environmental Sciences, P.O. Box 65, FI-00014, University of Helsinki, Finland; University of Helsinki, Department of Biosciences, P.O. Box 65, FI-00014 University of Helsinki, Finland E-mail: norbertas.noreika@gmail.com
  • Vuori, University of Jyväskylä, Department of Biology & Environmental Sciences, P.O. Box 35, FI-40014 Jyväskylä, Finland E-mail: anna@kureniemi.fi
  • Vepsäläinen, University of Helsinki, Department of Biosciences, P.O. Box 65, FI-00014 University of Helsinki, Finland E-mail: kari.vepsalainen@helsinki.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles