The study discusses the amplitude of the simultaneous groundwater table fluctuations in different parts of pine mires, and factors influencing it. The assumption generally used in hydrological computations that the simultaneous vertical fluctuation in the groundwater table in different parts of mires are equal does not hold good in detail. Numerous cases were detected where the fluctuation at one place did not correspond to that at another site to a statistically significant degree. The main reason for the unequal fluctuation at the different sites seems to be the difference in the microtopography and in the hydraulic conductivity between the sites.
The PDF includes a summary in Finnish.
In 1965 and 1966 a total of 25 experiments were laid out in various parts of Finland in order to find out the effect of simultaneous variation in the intensity of drainage and fertilization on the development of plantations and natural seedling stands of Scots pine (Pinus sylvestris L.) growing on pine swamps. The fertilizer used was Y fertilizer for peat soils, a fertilizer mixture containing 14 % N, 18 % P2O5 and 10 % K2O. It was applied in rates of 500, 1,000 and 1,500 kg/ha. The ditch spacings studied were 10, 20 and 30 m. The present paper is a preliminary report on a series of studies, the experiments will be observation for a total of 15–20 years.
Mortality of the planted seedlings was found to be the higher after the first growing season, the larger the quantity of fertilizer that had been applied. Fertilizing caused an increase in seedling mortality even after the first growing season following application. At the end of the fifth growing season the height of both natural and planted seedlings is the greater, the larger the quantity of fertilizer that has been applied. Analysis of the height growth of the seedlings showed that larger quantities of fertilizer did not increase growth in the same proportion. The occurrence of growth disturbances is the greater, the more fertilizer has been applied.
Fertilization also changed the composition of ground vegetation. The in the beginning of the experiment birch (Betula sp.) was absent in the area, but was found in the stands the greater abundance the higher application of the fertilizer.
From the viewpoint of growth of the seedlings the best results were obtained with the greatest intensity of fertilization and the narrowest ditch spacing used in the study. The results also show that strong fertilization and a high degree of drainage intensity are not capable of bringing about any particularly good growth on peatlands which originally are relatively poor in nutrients. The growth values now obtained equal only one third of those obtained on peat soils of greater fertility.
The PDF includes a summary in English.
Habitat loss and degradation are the main threats to biodiversity worldwide. For example, nearly 80% of peatlands in southern Finland have been drained. There is thus a need to safeguard the remaining pristine mires and to restore degraded ones. Ants play a pivotal role in many ecosystems and like many keystone plant species, shape ecosystem conditions for other biota. The effects of mire restoration and subsequent vegetation succession on ants, however, are poorly understood. We inventoried tree stands, vegetation, water-table level, and ants (with pitfall traps) in nine mires in southern Finland to explore differences in habitats, vegetation and ant assemblages among pristine, drained (30–40 years ago) and recently restored (1–3 years ago) pine mires. We expected that restoring the water-table level by ditch filling and reconstructing sparse tree stands by cuttings will recover mire vegetation and ants. We found predictable responses in habitat structure, floristic composition and ant assemblage structure both to drainage and restoration. However, for mire-specialist ants the results were variable and longer-term monitoring is needed to confirm the success of restoration since these social insects establish perennial colonies with long colony cycles. We conclude that restoring the water-table level and tree stand structure seem to recover the characteristic vegetation and ant assemblages in the short term. This recovery was likely enhanced because drained mires still had both acrotelm and catotelm, and connectedness was still reasonable for mire organisms to recolonize the restored mires either from local refugia or from populations of nearby mires.