Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Hao Xiong

Category : Research article

article id 23014, category Research article
Hao Xiong, Yong Pang, Wen Jia, Yu Bai. (2024). Forest stand delineation using airborne LiDAR and hyperspectral data. Silva Fennica vol. 58 no. 2 article id 23014. https://doi.org/10.14214/sf.23014
Keywords: canopy height model; automatic delineation; merge rule; over-segmentation
Highlights: Delineate forest stands by the fusion of airborne LiDAR and hyperspectral data automatically; The forest height, canopy closure, and species information were taken into account during the delineation process, aligning with forest management in reality; The delineation accuracy was verified through comparison with three reference data sources commonly used in forest management.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest stands, crucial for inventory, planning, and management, traditionally rely on time-consuming visual analysis by forest managers. To enhance efficiency, there is a growing need for automated methods that take into account essential forest attributes. In response, we propose a novel approach utilizing airborne Light Detection and Ranging (LiDAR) and hyperspectral data for automated forest stand delineation. Our approach initiates with over-segmentation of the Canopy Height Model (CHM), followed by attribute calculation for each segment using both CHM and hyperspectral data. Two rules are applied to merge homogeneous segments and eliminate others based on calculated attributes. The effectiveness of our method was validated using three types of reference forest stands with two indices: the explained variance (R2) and Intersection over Union (IoU). Results from our study demonstrated notable accuracy, with a R2 of 97.35% and 97.86% for mean tree height and mean diameter at breast height (DBH), respectively. The R2 for mean canopy height is 81.80%, outperforming manual delineation by 7.31% and multi-scale segmentation results by 2.13%. Furthermore, our approach achieved high IoU values, which indicates a strong spatial agreement with manually delineated forest stands and leading to fewer manual adjustments when applied directly to forest management. In conclusion, our forest stand delineation method enhances both internal consistency and spatial accuracy. This method contributes to improving practical performance and forest management efficiency.

  • Xiong, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China; School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China ORCID https://orcid.org/0000-0003-4432-2485 E-mail: xiongh29@mail2.sysu.edu.cn
  • Pang, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China ORCID https://orcid.org/0000-0002-9760-6580 E-mail: pangy@ifrit.ac.cn (email)
  • Jia, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China E-mail: jiawen@ifrit.ac.cn
  • Bai, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China E-mail: baiyu9224@163.com

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles