Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Brice Sinsin

Category : Research article

article id 1474, category Research article
Cedric A. Goussanou, Sabin Guendehou, Achille E. Assogbadjo, Maguette Kaire, Brice Sinsin, Aida Cuni-Sanchez. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. https://doi.org/10.14214/sf.1474
Keywords: carbon stock; allometric equations; non-destructive sampling; basic wood density
Highlights: Non-destructive sampling approach applied to derive ground truth observations and generate robust basic wood densities; Species-specific and generic allometric equations; Specific equations have better predictive capabilities than generic models.
Abstract | Full text in HTML | Full text in PDF | Author Info

The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.

  • Goussanou, Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 Cotonou, Benin E-mail: cedricgoussanou@gmail.com (email)
  • Guendehou, Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 Cotonou, Benin; Benin Centre for Scientific and Technical Research, 03 BP 1665 Cotonou, Benin E-mail: sguendehou@yahoo.fr
  • Assogbadjo, Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 Cotonou, Benin E-mail: assogbadjo@yahoo.fr
  • Kaire, Centre Régional AGRHYMET, Département Formation et Recherche, BP 11011 Niamey, Niger E-mail: m.kaire@agrhymet.ne
  • Sinsin, Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 Cotonou, Benin E-mail: bsinsin@gmail.com
  • Cuni-Sanchez, University of Copenhagen, Center for Macroecology, Evolution and Climate, Nørregade 10, P.O. Box 2177, 1017 Copenhagen K, Denmark E-mail: aidacuni@hotmail.com

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles