Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'GNSS'

Category : Research article

article id 10608, category Research article
Lennart Noordermeer, Erik Næsset, Terje Gobakken. (2022). Effects of harvester positioning errors on merchantable timber volume predicted and estimated from airborne laser scanner data in mature Norway spruce forests. Silva Fennica vol. 56 no. 1 article id 10608. https://doi.org/10.14214/sf.10608
Keywords: forest inventory; ALS; forest harvester; GNSS; precision forestry
Highlights: Timber volume was estimated using harvester and airborne laser scanner (ALS) data acquired with different scanners over eight years; The year of ALS acquisition did not have a significant effect on errors in timber volume estimates; Accuracies of timber volume estimates decreased significantly with increasing levels of positioning error; When using inaccurately positioned harvester data, larger grid cells are beneficial.
Abstract | Full text in HTML | Full text in PDF | Author Info

Newly developed positioning systems in cut-to-length harvesters enable georeferencing of individual trees with submeter accuracy. Together with detailed tree measurements recorded during processing of the tree, georeferenced harvester data are emerging as a valuable tool for forest inventory. Previous studies have shown that harvester data can be linked to airborne laser scanner (ALS) data to estimate a range of forest attributes. However, there is little empirical evidence of the benefits of improved positioning accuracy of harvester data. The two objectives of this study were to (1) assess the accuracy of timber volume estimation using harvester data and ALS data acquired with different scanners over multiple years and (2) assess how harvester positioning errors affect merchantable timber volume predicted and estimated from ALS data. We used harvester data from 33 commercial logging operations, comprising 93 731 harvested stems georeferenced with sub-meter accuracy, as plot-level training data in an enhanced area-based inventory approach. By randomly altering the tree positions in Monte Carlo simulations, we assessed how prediction and estimation errors were influenced by different combinations of simulated positioning errors and grid cell sizes. We simulated positioning errors of 1, 2, …, 15 m and used grid cells of 100, 200, 300 and 400 m2. Values of root mean square errors obtained for cell-level predictions of timber volume differed significantly for the different grid cell sizes. The use of larger grid cells resulted in a greater accuracy of timber volume predictions, which were also less affected by positioning errors. Accuracies of timber volume estimates at logging operation level decreased significantly with increasing levels of positioning error. The results highlight the benefit of accurate positioning of harvester data in forest inventory applications. Further, the results indicate that when estimating timber volume from ALS data and inaccurately positioned harvester data, larger grid cells are beneficial.

  • Noordermeer, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, NO-1432 Ås, Norway E-mail: lennart.noordermeer@nmbu.no (email)
  • Næsset, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, NO-1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Gobakken, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, NO-1432 Ås, Norway E-mail: terje.gobakken@nmbu.no

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles