Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'abundance'

Category : Article

article id 5247, category Article
Eeva-Liisa Jukola-Sulonen, Maija Salemaa. (1985). A comparison of different sampling methods of quantitative vegetation analysis. Silva Fennica vol. 19 no. 3 article id 5247. https://doi.org/10.14214/sf.a15426
Keywords: clear-cutting; vegetation analysis; sampling methods; abundance of ground vegetation; species numbers; diversity indices
Abstract | View details | Full text in PDF | Author Info

Different sampling methods (the percentage cover scale, the graphical method, two-point quadrat methods, the five-, nine- and twelve-class cover scales, and the biomass harvesting) were used in estimating abundance of ground vegetation in clear-cut areas and on an abandoned field in Southern and Central Finland. The results are examined with the help of DCA ordinations. In addition, the species numbers and diversity indices obtained by different sampling methods are compared.

There were no large differences in DCA configurations between the sampling methods. According to all the sampling methods, a complex soil fertility-moisture gradient (a forest site type) was interpreted as the main ordination gradient in the vegetation data for clear-cut areas. However, different sampling methods did not give similar estimates of species numbers and diversity indices.

The PDF includes a summary in Finnish.

  • Jukola-Sulonen, E-mail: ej@mm.unknown (email)
  • Salemaa, E-mail: ms@mm.unknown

Category : Research article

article id 1005, category Research article
Marjut Turtiainen, Jari Miina, Kauko Salo, Juha-Pekka Hotanen. (2013). Empirical prediction models for the coverage and yields of cowberry in Finland. Silva Fennica vol. 47 no. 3 article id 1005. https://doi.org/10.14214/sf.1005
Keywords: generalized linear mixed model; abundance; berry yield; Vaccinium vitis-idaea L.
Highlights: The site fertility significantly affected the abundance of cowberry on mineral soils, spruce mires and pine mires; The stand basal area and dominant tree species were among the most important forest structural predictors in the model for the coverage; In the cowberry yield model developed for mineral soil sites, the stand basal area and coverage of cowberry plants were statistically significant predictors.
Abstract | Full text in HTML | Full text in PDF | Author Info
Empirical models for the coverage and berry yield of cowberry (Vaccinium vitis-idaea L.) were developed using generalized linear mixed models (GLMMs). The percentage coverage of cowberry was predicted as a function of site and stand characteristics using data from the Finnish National Forest Inventory (NFI) in 1995. The average annual yield, including the between-year variation in the yield, was predicted as a function of percentage coverage and stand characteristics using permanent experimental plots (MASI) established in different areas of Finland and measured in 2001-2012. The model for cowberry yields (Model 2) was developed for mineral soil forests. The model for the coverage (Model 1) was constructed so that it considers both mineral soil sites and also many other sites where cowberry occurs in the field layer. According to Model 1, the site fertility significantly affected the abundance of cowberry on mineral soils, spruce mires and pine mires. The stand basal area and dominant tree species were among the most important forest structural predictors in Model 1. The site fertility was not a significant predictor in the cowberry yield model. Instead, the stand basal area and coverage of cowberry plants were found to be statistically significant predictors in Model 2. The estimated models were used to predict the cowberry coverage, average annual yield and its 95 % confidence interval along with stand development. The models of this study can be used for multi-objective forest planning purposes.
  • Turtiainen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: marjut.turtiainen@uef.fi (email)
  • Miina, Finnish Forest Research Institute, Joensuu Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: jari.miina@metla.fi
  • Salo, Finnish Forest Research Institute, Joensuu Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: kauko.salo@metla.fi
  • Hotanen, Finnish Forest Research Institute, Joensuu Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juha-pekka.hotanen@metla.fi

Category : Research note

article id 1573, category Research note
Marjut Turtiainen, Jari Miina, Kauko Salo, Juha-Pekka Hotanen. (2016). Modelling the coverage and annual variation in bilberry yield in Finland. Silva Fennica vol. 50 no. 4 article id 1573. https://doi.org/10.14214/sf.1573
Keywords: abundance; berry yield; generalised linear mixed model; Vaccinium myrtillus L.
Highlights: The highest bilberry coverage was found in mesic heath forests and fell forests; On peatlands the coverage was, on average, lower than on mineral soil sites; The approach introduced in this study to calculating annual berry yield indices is a promising way for estimating total annual bilberry yields over a given period of time.
Abstract | Full text in HTML | Full text in PDF | Author Info

The coverage of bilberry (Vaccinium myrtillus L.) was modelled as a function of site and stand characteristics using the permanent sample plots of the National Forest Inventory (NFI) (Model 1). The sample sites consisted of mineral soil forests as well as fells and peatland sites. Annual variation in the bilberry yield (Model 2) was analysed based on measurements over 2001–2014 in the permanent sample plots (so-called MASI plots) in various areas of Finland. We derived annual bilberry yield indices from the year effects of Model 2 and investigated whether these indices could be used to estimate annual variation in bilberry crops in Finland. The highest bilberry coverage was found in mesic heath forests and fell forests. On peatlands the coverage was, on average, lower than on mineral soil sites; the peatland sites with most bilberry coverage were meso-oligotrophic and oligotrophic spruce mires and oligotrophic pine mires. Our bilberry yield indices showed similar variation to those derived from the mean annual berry yields reported and calculated earlier using the MASI plots; the correlation between the indices was 0.795. This approach to calculating annual berry yield indices is a promising way for estimating total annual bilberry yields over a given period of time. Models 1 and 2 can be used in conjunction with the Miina et al.’s (2009) bilberry yield model when bilberry coverage, average annual yield and annual variation in the yield are to be predicted in forest planning.

  • Turtiainen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: marjut.turtiainen@uef.fi (email)
  • Miina, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Box 68, FI-80101 Joensuu, Finland E-mail: jari.miina@luke.fi
  • Salo, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, Box 68, FI-80101 Joensuu, Finland E-mail: kauko.salo@luke.fi
  • Hotanen, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Box 68, FI-80101 Joensuu, Finland E-mail: juha-pekka.hotanen@luke.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles