Current issue: 58(5)
Process-based tree growth models are recognized to be flexible tools which are valuable for investigating tree growth in relation to changing environment or silvicultural treatments. In the context of forestry, we address two key modelling problems: allocation of growth which determines total wood production, and distribution of wood along the stem which determines stem form and wood quality. Growth allocation and distribution are the outcome of carbon translocation, which may be described by the Munch theory. We propose a simpler gradient process to describe the carbon distribution in the phloem of conifers. This model is a reformulation of a carbon diffusion-like process proposed by Thornley in 1972. By taking into account the continuity of the cambium along the stem, we obtain a one-dimensional reaction-diffusion model which describes both growth allocation between foliage, stem and roots, and growth distribution along the stem. Distribution of wood along the stem is then regarded as an allocation process at a smaller scale. A preliminary sensitivity analysis is presented. The model predicts a strong relationship between morphology and foliage-root allocation. It also suggests how empirical data, such as stem analysis, could be used to calibrate and validate allocation rules in process-based growth models.
A measurement system developed for the parallel and real-time measurement of temperature, matric potential and oxygen diffusion rate (ODR) of a growth medium was assessed. The system consisted of a portable computer, a datalogger, temperature sensors, tensiometers and an ODR-meter with Pt-sensors.
For the measurements, proper sensor contact with the growth medium was needed. For matric potential measurement, appropriate shape and material of the tensiometer tips should be selected for different measurement purposes. The determination of oxygen diffusion rate is based on single, non-continuous measurements. The ODR-measurement required special care with the insertion and handling of the electrodes and selection of applied voltage. The ODR-measurement of a coarse peat medium was applicable only at matric potentials > -5 kPa. This measurement system was shown to be useful and suitable for accurate determination of thermal-, water- and aeration conditions of a growth medium under greenhouse conditions.
The PDF includes an abstract in Finnish.