Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'feedstock supply radius'

Category : Research article

article id 145, category Research article
Jianbang Gan, C. T. Smith. (2010). Coupling greenhouse gas credits with biofuel production cost in determining conversion plant size. Silva Fennica vol. 44 no. 3 article id 145. https://doi.org/10.14214/sf.145
Keywords: bioethanol; production cost; carbon balance; feedstock supply radius; life-cycle analysis
Abstract | View details | Full text in PDF | Author Info
Biofuel plant size is one of the key variables in biofuel supply chain analysis as it plays a pivotal role in controlling the efficacy of both feedstock supply and feedstock-to-biofuel conversion. The unit production cost and greenhouse gas (GHG) balance of biofuels vary with plant size. We develop an analytical framework for integrating biofuel production costs and GHG balance derived from life-cycle analysis into supply chain optimization, followed by its application to ethanol production using forest biomass in the southern United States. We derive formulas for determining the optimal biofuel plant size and the corresponding feedstock supply radius based on the minimization of biofuel production costs less GHG benefits. Our results indicate that though biofuel plant size and feedstock supply radius should be augmented by considering GHG benefits, the GHG price will have a more significant impact on net biofuel production costs than on conversion plant size or feedstock supply radius. With a rise in the GHG price the net biofuel production cost tends to increase while the directions of change in plant size and feedstock supply radius are uncertain, depending upon the costs and GHG emissions of biomass transport and feedstock-to-fuel conversion. Combining GHG offset values with biofuel production costs enables us to more holistically examine the biofuel supply chain.
  • Gan, Department of Ecosystem Science and Management, Texas A&M University, Texas, USA E-mail: j-gan@tamu.edu (email)
  • Smith, Faculty of Forestry, University of Toronto, Ontario, Canada E-mail: cts@nn.ca

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles