Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'male flowering'

Category : Article

article id 5129, category Article
Olavi Luukkanen. (1981). Effects of gibberellins GA4 and GA7 on flowering in Scots pine grafts. Silva Fennica vol. 15 no. 4 article id 5129. https://doi.org/10.14214/sf.a15186
Keywords: Pinus sylvestris; Scots pine; flowering; growth hormones; gibberellic acid; male flowering; female flowering
Abstract | View details | Full text in PDF | Author Info

Ethanolic sprays of GA4 or GA7 on 9-year old Scots pine (Pinus sylvestris L.) grafts, repeated four times during the shoot elongation period, resulted in a statistically significant increase in female flowering one year after the treatment. Of the two compounds, GA4 seemed to be somewhat more efficient, yielding 47 female strobili/100 shoots vs. 36 and 6 strobili/100 shoots in GA7 and control treatments respectively. The mixture of GA4 and GA7 compounds was also applied and seemed to have an effect intermediary to those of the pure compounds. However, due to the limited amounts of material, none of the differences between the gibberellins could be statistically confirmed. Male flowering frequencies were also too low to allow any firm conclusions, but the numerical results suggested that the purified gibberellins may promote male and female flowering in different ways.

The PDF includes a summary in Finnish.

  • Luukkanen, E-mail: ol@mm.unknown (email)

Category : Article

article id 7523, category Article
Alpo Luomajoki. (1999). Differences in the climatic adaptation of silver birch (Betula pendula) and downy birch (B. pubescens) in Finland based on male flowering phenology. Acta Forestalia Fennica no. 263 article id 7523. https://doi.org/10.14214/aff.7523
Keywords: Betula pendula; Betula pubescens; adaptation; seasonality; hybridization; male flowering; heat sum; timing of flowering; pollen catch; photoperiods; ecophysiological differences
Abstract | View details | Full text in PDF | Author Info

Male flowering was studied at the canopy level in 10 silver birch (Betula pendula Roth) stands from 8 localities and 14 downy birch (B. pubescens Ehrh.) stands from 10 localities in Finland in 1963–73. Distribution of cumulative pollen catches was compared to the normal Gaussian distribution. The basis for timing of flowering was the 50% point of the anthesis-fitted normal distribution. To eliminate effects of background pollen, only the central, normally distributed part of the cumulative distribution was used. Development was measured and tested in calendar days, in degree days (> 5°C) and in period units. The count of the parameters began in March 19.

Male flowering in silver birch occurred from late April to late June depending on latitude, and flowering in downy birch took place from early May to early July. The heat sums needed for male flowering varied in downy birch stands latitudinally but there was practically no latitudinal variation in silver birch flowering. The amount of male flowering in stands of the both species were found to have a large annual variation but without any clear periodicity.

The between years pollen catch variation in stands of either birch species did not show any significant latitudinal correlation in contrast to Norway spruce stands. The period unit heat sum gave the most accurate forecast of the timing of flowering for 60% of the silver birch stands and for 78.6% of the downy birch stands. Silver birch seems to have a local inclination for a more fixed flowering date compared to downy birch, which could mean a considerable photoperiodic influence on flowering time of silver birch. The species had different geographical correlations.

Frequent hybridization of the birch species occurs more often in Northern Finland than in more southerly latitudes. The different timing in the flowering causes increasing scatter in flowering times in the north, especially in the case of downy birch. Thus, the change of simultaneous flowering of the species increases northwards due to a more variable climate and higher altitudinal variation. Compared with conifers, the reproduction cycles of the two birch species were found to be well protected from damage by frost.

  • Luomajoki, E-mail: al@mm.unknown (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles