Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Tuula Aalto

Category : Research article

article id 529, category Research article
Tuula Aalto, Pertti Hari, Timo Vesala. (2002). Comparison of an optimal stomatal regulation model and a biochemical model in explaining CO2 exchange in field conditions. Silva Fennica vol. 36 no. 3 article id 529. https://doi.org/10.14214/sf.529
Keywords: photosynthesis; Scots pine; optimization; Pinus sylvestris L.; CO2 exchange; biochemical model
Abstract | View details | Full text in PDF | Author Info
Gas exchange of Pinus sylvestris L. was studied in subarctic field conditions. Aspects on optimal control of the gas exchange were examined using approach by Hari et al. (Tree Phys. 2: 169–175, 1986). Biochemical model by Farquhar et al. (Planta 149: 78–90, 1980) was utilized to describe the photosynthetic production rate of needles. The model parameters were determined from field measurements. The results from the optimization approach and biochemical model were compared and their performance was found quite similar in terms of R2 calculated using measured exchange rates (0.89 for optimization model and 0.85 for biochemical model). Minor differences were found in relation to responses to intercellular carbon dioxide concentration and temperature.
  • Aalto, Finnish Meteorological Institute, Air Quality Research, Sahaajankatu 20 E, FIN-00810 Helsinki, Finland E-mail: tuula.aalto@fmi.fi (email)
  • Hari, University of Helsinki, Dept. of Forest Ecology, P.O. Box 27, FIN-00014 University of Helsinki, Finland E-mail: ph@nn.fi
  • Vesala, University of Helsinki, Dept. of Physics, P.O. Box 64, FIN-00014 University of Helsinki, Finland E-mail: tv@nn.fi
article id 674, category Research article
Tuula Aalto. (1998). Carbon dioxide exchange of Scots pine shoots as estimated by a biochemical model and cuvette field measurements. Silva Fennica vol. 32 no. 4 article id 674. https://doi.org/10.14214/sf.674
Keywords: Pinus sylvestris; photosynthesis; Scots pine; CO2 exchange; cuvette measurements
Abstract | View details | Full text in PDF | Author Info
A biochemical model was used to calculate CO2 fluxes to Scots pine shoots in two boreal measurement stations, Hyytiälä in southern Finland (61°51’N, 24°17’E) and Värriö in northern Finland (67°46’N, 29°35’E). The results of the model were compared with cuvette measurements performed in field conditions. A differential equation for change in gas concentration inside a closed cuvette was constructed and solved in order to obtain conductances and fluxes. The results were generally in a good agreement, the correlation coefficients varied from 0.74 to 0.95. Some discrepancies were also found. The model followed more intensively changes in temperature. This could be seen in northern Finland measurements at low temperatures (< 18 °C). The modelled temperature response indicated low fluxes at low temperatures, but measurements did not show any decrease. The irradiation response was relatively similar in both measuring sites and according to the model. Cuvette measurements showed slightly smaller quantum yields as a result from shading of the needles. The temperature dependences of the biochemical model parameters Jmax and Vc(max) were re-evaluated from the field measurements. The results for Vc(max) agreed well with earlier estimations, while the results for Jmax indicated relatively high values at low temperatures especially in northern Finland. Exponential fitting produced also substomatal concentrations of CO2, which agreed quite well with the model. The daily minimum of substomatal/ambient concentration ratio varied from 0.4 to 0.8.
  • Aalto, Department of Physics, P.O. Box 9, FIN-00014 University of Helsinki, Finland E-mail: tuula.aalto@helsinki.fi (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles