Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'Gap model'

Category : Article

article id 5593, category Article
Malle Mandre, Jaan Klõseiko, Vaike Reisner, Hardi Tullus. (1996). Assessment of CO2 fluxes and effects of possible climate changes on forests in Estonia. Silva Fennica vol. 30 no. 2–3 article id 5593. https://doi.org/10.14214/sf.a9238
Keywords: climate change; CO2; forestry; Estonia; carbon dioxide; forest composition; Forest Gap model
Abstract | View details | Full text in PDF | Author Info

The present study is the first attempt to carry out an inventory of greenhouse gas (GHG) fluxes in the forests of Estonia. The emission and uptake of CO2 as a result of forest management, forest conversion and abandonment of cultivated lands in Estonia was estimated. The removal of GHG by Estonian forests in 1990 exceeded the release about 3.3 times. Changes in the species composition and productivity of forest sites under various simulated climate change scenarios have been predicted by using the Forest Gap Model for the central and coastal areas of Estonia. The computational examples showed that the changes in forest community would be essential.

  • Mandre, E-mail: mm@mm.unknown (email)
  • Klõseiko, E-mail: jk@mm.unknown
  • Reisner, E-mail: vr@mm.unknown
  • Tullus, E-mail: ht@mm.unknown
article id 5592, category Article
Ari Talkkari. (1996). Regional predictions concerning the effects of climate change on forests in southern Finland. Silva Fennica vol. 30 no. 2–3 article id 5592. https://doi.org/10.14214/sf.a9237
Keywords: climate change; Finland; simulation; growing stock; wood production; Gap model; regional predictions; cutting yield
Abstract | View details | Full text in PDF | Author Info

A gap-model was used with forest inventory data in taking ground-true site, soil and tree characteristics into account in predicting the effects of climate change on forests. A total of 910 permanent sample plots established in the course of national forest inventory (NFI) in Finland and located on mineral soil sites in southern Finland were selected as the input data. The climatological input used in the simulations consisted of interpolated means of and deviations from long-term local temperature and precipitation records. The policy-oriented climate scenarios of SILMU (Finnish Research Programme on Climate Change) were used to describe the climate change. The temperature changes in the climate scenarios were increases of ca. +1.1 °C (low), +4.4 °C (medium) and +6.6 °C (high) compared to the current climate in 110 years. The simulation period was 110 years covering the time years 1990–2100.

Southern Finland, divided into fifteen forestry board districts, was used as the study region. Regional development of stand volume, cutting yield, and total wood production of forests under different climate scenarios were examined. The annual average growth in simulations under current climate was close to that observed in NFL Forests benefited from a modest temperature increase (Scenario 2), but under Scenario 1 the growing stock remained at a lower level than under the current climate in all parts of the study region. In wood production and cutting yield there were regional differences. In the southern part of the study regional wood production under Scenario 1 was ca. 10% lower than under the current climate, but in the eastern and western parts wood production was 5–15% higher under Scenario 1 than under the current climate. The relative values of total wood production and cutting yield indicated that the response of forests to climate change varied by geographical location and the magnitude of climate change. This may be a consequence of not just varying climatic (e.g. temperature and precipitation) and site conditions, but of varying responses by different kind of forests (e.g. forests differing in tree species composition and age).

  • Talkkari, E-mail: at@mm.unknown (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles