The paper is a continuation of an earlier report by the author on the same subject (Acta Forestalia Fennica 133, 1973). Norway spruce (Picea abies (L.) H. Karst.) wounds were inoculated with Peniophora gigantea (Phlebiopsis gigantea) and the discolorations starting from the wounds were investigated three years after the wounding. Fomes annosus (Heterobasidion annosum) had infected 17 % of the total number of wounded trees. If no microbes were growing at the furthest point of the discoloration that had started from the wound, the discoloration advanced upward from wounds made at breast height at a rate of 61 cm/year in the dominant and 36 cm/year in the suppressed trees. In the dominant trees, a year after the wound was inflicted the discoloration had advanced at a rate of 50 cm/year and after three years the rate was 61 cm/year. This difference is not significant. Where microbes were present at the furthest point of discoloration, the discoloration had advanced 27 cm/year in one year and 42 cm/year in three years. Also, this difference is not significant.
A microbe was isolated from the furthest point of discoloration in only 13 out of 42 possible cases. The most common microbe was Stereum sanguinolentum. Bacteria showed the fastest rate of advance.
The PDF includes a summary in Finnish.
Infection of living Norway spruce (Picea abies (L.) H. Karst.) trees by bacteria, and the properties of these bacteria were studied. Bacterial antagonism to three decay fungi was also studied in laboratory conditions.
Bacteria could be found in 26% of all spruce injuries. Bacterial infection was most frequent in injuries made in March–April and June, and least frequent in December–February. Bacteria infected most often sapwood injuries in roots above soil level, 55% of the bacterial colonies were isolated from these injuries. 27% of the colonies were isolated from injuries made by increment borer at breast height, extending to heartwood, 16% from sapwood injuries at breast height, and 2% from injuries at stump height. The main bacterial groups were gram-positive rods (55%) and gram-negative rods (29%).
In 65% of the bacteria the metabolism was fermentative, in 14% slowly fermentative, in 7% oxidative, in 8% slowly oxidative, and in 6% alkalizing. 19% utilized cellulose, 15% in the presence of organic, 3% in the presence of inorganic nitrogen.
One bacterial strain was the only micro-organism growing in the injury a year after the damage, although the injury had been infected with Peniophora gigantea (Phlebiopsis gigantea). In laboratory experiments, this rod bacterium, gram-negative strain proved to be antagonistic to Fomes annosus (Heterobasidion annosum), Stereum sanguinolentum and P. gigantea. It had no capacity for cellulose utilization.
The PDF includes a summary in Finnish.
The purpose of the present study was to investigate the success of infecting Norway spruce (Picea abies) wounds with a mycelial suspension of Peniophora gigantea (now Phlebiopsis gigantea). In an approximately 100-year old spruce stand on Myrtillus type soil in Southern Finland, two dominant and two suppressed spruce trees were wounded each month during one year, and infected with P. gigantea. Control trees were only wounded. One year after wounding the trees were sawn into discs near the wound. Samples of the discs were cultured to identify the microbes.
In the suppressed trees, the P. Gigantea infection had been successful in 75 % of the wounds extending into heartwood. For dominant trees, the percentage was 50. In sapwood wounds the infection was considerably less successful. In two wounds of the control trees were noted airborne P. gigantea infection, and in four Fomes annosus (now Heterobasidion annosum).
Discoloration starting from the wounds was not a reliable proof that microbes were present. According to the variance analysis, the upward advance of discoloration without microbes showed a greater correlation with the crown class than with the type and site of the wounds. The downward advance depended more on the type of the wounds than the crown class.
A total of 37 fungi were identified by species or family, from the damaged trees. A large number of bacteria were also found. The most common fungi were the Penicillium species, and they had most often advanced farthest above and below the wound. Of the actual decay fungi, Stereum sanguinolentum showed the highest incidence and fastest growth. Coryne cylichnium and Cephalosporium species were also relatively common.
The PDF includes a summary in Finnish.
An attempt was made to restrict the aerial distribution of Fomes annosus (now Heterobasidion annosum) through the cut surfaces of spruce stumps by inoculating the surfaces, immediately after felling, with mycelial suspension, grown in the laboratory on malt agar, of Fomes pinicola, Lenzites sepiaria, Peniophora gigantea (now Phlebiopsis gigantea), Polyporus abietinus and Trichoderma viride. Trees were felled once a month for a year. Samples were taken from the cut surfaces of the stumps approximately one year after the felling and the inoculation.
P. gigantea inhibited the infection of cut stump surfaces by airborne F. annosus. P. gigantea cut down both the total number and the number of the species of fungi infecting the stump through aerial distribution. T. viride had a parallel but less marked effect. F. pinicola, L. sepiaria and P. abietinus proved to be weak colonizers of spruce stumps. When they were used to inoculate the stumps, the number of fungi infecting the cut surfaces was larger than that infecting the stumps treated with P. gigantea and T. Viride. A year after the inoculation some stumps were excavated with their roots. Fungi from the discoloured spots of wood in the stumps were cultured for identification. It was found that many different fungal species from the soil and the points of root grafting had infected the roots of the stump in the course of the year. The majority of the identified microbes were non-Basidiomycetes fungi, and bacteria.
A year after the felling and inoculation, a white mycelial sheet was seen between the wood and bark of many stumps. Several fungi, including Armillaria mellea, Trichoderma viride, Penicillium species, and Peniophora gigantea were isolated from this sheet.
The PDF includes a summary in Finnish.
Fungal diaspores were caught in Southern Finland (Helsinki, Turku, Jyväskylä, Lappeenranta) and in Northern Finland (Oulu, Ivalo) in 1967—68 on exposed discs of Picea abies (L.) Karst. wood. In the laboratory, the diaspores on the discs developed mycelia which stained the wood. A month after exposure fungi and bacteria were isolated from stained areas.
The number of identified fungal species was relatively high and included fungi of different taxonomic groups. The most common fungi identified were Peniophora gigantea and Trichoderma viride. The most common Agaricaceae obtained were species of Hypholoma. Of the fungi imperfecti, relatively high numbers of not only Trichoderma viride but also of the Alternaria and Fusarium species were isolated. According to the investigation, species of several fungal groups seem to participate in the early stages of the decayed process of spruce.
The PDF includes a summary in Finnish.
An investigation into the aerial distribution of Fomes annosus (now Heterbasidion annosum) in Finland was carried out. Prevalence of the fungus in the air was estimated from cultural counts of mycelia produced by diaspores which had fallen onto spruce discs and agar plates. The influence of climate on deposition of diaspores was determined from weather recordings.
For the main study, F. annosus diaspores collected from spruce stands in Helsinki, Anjala and Jokioinen were recorded at weekly or fortnightly intervals throughout 1968. Diaspores fell during the 24-hour periods almost continuously at all three observation sites from April to November, but the deposition was most frequent from late May to the end of October. The amounts of deposition varied greatly with the observation sites, seasons of the year, and time of the day. The fall was heaviest at Anjala and slightest at Jokioinen.
Throughout the season of deposition, more diaspores were trapped on all observation sites at night than during the day. A significant positive correlation was found between the fall of F. annosus diaspores and the air temperature. Diaspores of F. annosus were found in the forest on needles and leaves, and underneath the humus layer in mineral soil. The fall of diaspores decreased as the distance from sporophores increased.
The aerial distribution of two antagonists to F. annosus, viz. Peniophora gigantea and Trichoderma viride, was also studied. It was found that the diaspores of the former fell mainly during the same seasons as those of F. annosus.