Current issue: 58(5)
The effect of nitrogen fertilization and two insecticides on the occurrence of the plant pine bark bug, Aradus cinnamomeus Panzer, was investigated in a young Scots pine (Pinus sylvestris L.) stand in Southern Finland. Three years after the treatment the bug density was lowest in the trees treated with lindane or dimethoate. However, in spite of the increasing height growth of the trees, they did not grow significantly faster than the control trees. Nitrogen fertilization increased both bug density and the height growth of the trees. Thus, the value of nitrogen fertilization against Aradus cinnamomeus remains obscure.
The PDF includes a summary in Finnish.
The dying-off of more trees in an over-aged Norway spruce (Picea abies (L.) H. Karst.) stand caused by Ips-bark beetles was reduced by a pheromone preparation, ipslure. 20 preparations placed in trapping bolts captured more than 13,700 specimens of Ips typographus L. and Ips duplicatus Sahlb., which alone corresponded to a saving of five old trees in this valuable exhibition and seed collection stand. Attractance of ipslure to the following predators of bark beetles was also examined; Thanasimus formicarius, T. rufipes, Epuracea bickhardti, Rhizophagus ferrugineus, Pityophagus ferrugineus.
The PDF includes a summary in English.
Fomes annosus (Fr.) Cke. (now Heterobasidion annosum (s.str.)) has proved highly adaptable to varying conditions. Thus, the fungus is able to alter the pH as well as in alkalic as acid direction according to the original pH-grade. The fungus spreads mainly by basidiospores or by the sterile mycelium, but maybe also by the conidiospores. The fungus has spread through the temperate zone; in the tropical and sub-tropical zone it is found sporadically. There is a mention in the literature of at least 136 species in which it has been found. It is found in hardwoods but is most disastrous in conifers. The economic losses are considered biggest in England, Germany and Scandinavia.
The research has not been able to find a safe way to protect the trees growing on an infected site. The only way to limit the damage seems to be the use of mixed stands. Stump-protection has proved to be a relatively effective way to prevent the spread of the fungus to uninfected sites. The formerly used creosote has been mainly substituted by new chemicals, such as sodium nitrite. They act by altering the stump in a way that is favourable for antagonists to Fomes annosus, such as Trichoderma viride and Penicillium sp., or the recently presented Peniophora gigantea.
Although the fungus is found in many tree species, there is a difference in the relative resistance of different species. Among the conifers, the Abies-species (with exception of Abies grandis, A. alba and A. sachalienensis) are considered comparatively resistant. The species of Larix and Pseudotsuga are more resistant than those of Picea and Pinus.
The PDF includes a summary in English.
The aim of this investigation was to clarify aerial infection of Fomes annosus (now Heterbasision annosum) in the cross-sections of stumps of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) in Southern Finland. In addition, an attempt was made to study possibilities to reduce an eventual aerial infection by means of spreading various protecting substances on the cross-section of the stumps immediately after cutting. The stumps were treated withs creosote, ceruse (lead white) and a product named ”Ventti”, which active constituent is copper. The effect of prescribed burning of the site on the aerial spreading of the fungus was studied.
Five sample plots were located in spruce stands and one in a pine stand. One of the spruce stands was prescribed burned. Samples were taken from the stumps 14–17 and 24–29 months after cutting. To identify the fungi, the samples were cultivated on a nutrient substrate in laboratory conditions. The results show that Heterobasidion annosum had spread by air to cross-sections of stumps of spruce. 11.5% of the samples taken from the spruce stumps 14–17 months and 17% of samples taken 24–29 months after cutting were infected. Burning of the site reduced strongly the aerial infection of stumps by the fungus. The stumps of Scots pine were not infected by Heterobasidion annosum in this study. The infection could be limited by treating the cross-sections with substances that are used to prevent growth of mould.
The PDF includes a summary in English.
The article represents, based on meteorological data from 1900-1910 and 1911-1915 and annual reports of forest directorate with descriptions or statistics about wind damages of trees in state owned lands, the biggest storms in Finland and the damage they have caused to forests. The most powerful storms of the studied period and damages they caused are presented.
It was found out that the storm damages take place primarily during the growing season. Frozen ground and a snow cover protects the trees from falling.There are lot of storm damages in the Finnish forests. They are particularly common in forests logged as strips or with clear cuts, but not absent in selection forestry either. To protect the forests from natural disasters requires more intensive management. For the forestry purposes it is important to know the most common wind directions of different parts of the country. The paper finds out which stormy wind directions are most dangerous to Finnish forests and hence need to be mostly taken into consideration when planning logging operations. The study is based on meteorological data that has been compared with the reports of storm damages in state owned forests.
The most storm damage take place during the growing season, and to some extent in late fall. The regeneration felling should take place against the primary direction of the stormy winds. The paper represents the most common wind directions for different parts of the country. However, the wind directions may vary from the primary with local conditions such as altitude differences.
An attempt was made to restrict the aerial distribution of Fomes annosus (now Heterobasidion annosum) through the cut surfaces of spruce stumps by inoculating the surfaces, immediately after felling, with mycelial suspension, grown in the laboratory on malt agar, of Fomes pinicola, Lenzites sepiaria, Peniophora gigantea (now Phlebiopsis gigantea), Polyporus abietinus and Trichoderma viride. Trees were felled once a month for a year. Samples were taken from the cut surfaces of the stumps approximately one year after the felling and the inoculation.
P. gigantea inhibited the infection of cut stump surfaces by airborne F. annosus. P. gigantea cut down both the total number and the number of the species of fungi infecting the stump through aerial distribution. T. viride had a parallel but less marked effect. F. pinicola, L. sepiaria and P. abietinus proved to be weak colonizers of spruce stumps. When they were used to inoculate the stumps, the number of fungi infecting the cut surfaces was larger than that infecting the stumps treated with P. gigantea and T. Viride. A year after the inoculation some stumps were excavated with their roots. Fungi from the discoloured spots of wood in the stumps were cultured for identification. It was found that many different fungal species from the soil and the points of root grafting had infected the roots of the stump in the course of the year. The majority of the identified microbes were non-Basidiomycetes fungi, and bacteria.
A year after the felling and inoculation, a white mycelial sheet was seen between the wood and bark of many stumps. Several fungi, including Armillaria mellea, Trichoderma viride, Penicillium species, and Peniophora gigantea were isolated from this sheet.
The PDF includes a summary in Finnish.