The presence/absence data of 27 forest insect taxa (Retinia resinella, Formica spp., Pissodes spp., several scolytids) and recorded environmental variation were used to investigate the applicability of modelling insect occurrence based on satellite imagery. The sampling was based on 1,800 sample plots (25 m by 25 m) placed along the sides of 30 equilateral triangles (side 1 km) in a fragmented forest area (approximately 100 km2) in Evo, Southern Finland. The triangles were overlaid on land use maps interpreted from satellite images (Landsat TM 30 m multispectral scanner imagery 1991) and digitized geological maps. Insect occurrence was explained using either environmental variables measured in the field or those interpreted from the land use and geological maps. The fit of logistic regression models carried between species, possibly because some species may be associated with characteristics of single trees while other species with stand characteristics. The occurrence of certain insect species at least, especially those associated with Scots pine, could be relatively accurately assessed indirectly on the basis of satellite imagery and geological maps. Models based on both remotely sensed and geological data better predicted the distribution of forest insects except in the case of Xylechinus pilosus, Dryocetes sp. and Trypodendron lineatum, where the differences were relatively small in favour of the models based on field measurements. The number of species was related to habitat compartment size and distance from the habitat edge calculated from the land use maps, but logistic regressions suggested that other environmental variables in general masked the effect of these variables in species occurrence at the present scale.
Biogeographical patterns of the Scolytidae in Fennoscandia and Denmark, based on species incidence data from the approximately 70 km x 70 km quadrats (n = 221) used by Lekander et al. (1977), were classified to environmental variables using multivariate methods (two-way indicator species analysis, detrended correspondence analysis, canonical correspondence analysis).
The distributional patterns of scolytid species composition showed similar features to earlier presented zonations based on vegetation composition. One major difference, however, was that the region was more clearly divided in an east-west direction. Temperature variables associated with the location of the quadrat had the highest canonical coefficient values on the first axis of the CCA. Although these variables were the most important determinants of the biogeographical variation in the beetle species assemblages, annual precipitation and the distribution of Picea abies also improved the fit of the species data.
Samples with the most deviant rarity and typicality indices for the scolytid species assempblages in each quadrat were concentrated in several southern Scandinavian quadrats, in some quadrats in northern Sweden, and especially on the Swedish islands (Öland, Gotland, Gotska Sandön) in the Baltic Sea. The use of rarity indices which do not take the number of species per quadrat, also resulted high values for areas near Stockholm and Helsinki with well-known faunas. Methodological tests in which the real changes in the distribution of Ips acuminatus and I. amitinus were used as indicators showed that the currently available multivariate methods are sensitive to small faunal shifts even, and thus permit analysis of the fauna in relation to environmental changes. However, this requires more detailed monitoring of the species’ distributions over longer time spans.
Distribution of seven species (Scolytus intricatus, S. laevis, Hylurgops glabratus, Crypturgus cinereus, Pityogenes salasi, Ips typographus, and Cyleborus dispar) were predicted by logistic regression models using climatic variables. In spite of the deficiencies in the data and the environmental variables selected, the models were relatively good for several but not for all species. The potential effects of climate change on bark beetles are discussed.
The PDF includes a summary in Finnish.