Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'classified satellite imagery'

Category : Research article

article id 478, category Research article
Ronald E. McRoberts, Daniel G. Wendt, Greg C. Liknes. (2005). Stratified estimation of forest inventory variables using spatially summarized stratifications. Silva Fennica vol. 39 no. 4 article id 478. https://doi.org/10.14214/sf.478
Keywords: bias; precision; classified satellite imagery; Internet; variance
Abstract | View details | Full text in PDF | Author Info
Large area natural resource inventory programs typically report estimates for selected geographic areas such as states or provinces, counties, and municipalities. To increase the precision of estimates, inventory programs may use stratified estimation, with classified satellite imagery having been found to be an efficient and effective basis for stratification. For the benefit of users who desire additional analyses, the inventory programs often make data and estimation procedures available via the Internet. For their own analyses, users frequently request access to stratifications used by the inventory programs. When data analysis is via the Internet and stratifications are based on classifications of even medium resolution satellite imagery, the memory requirements for storing the stratifications and the online time for processing them may be excessive. One solution is to summarize the stratifications at coarser spatial scales, thus reducing both storage requirements and processing time. If the bias and loss of precision resulting from using summaries of stratifications is acceptably small, then this approach is viable. Methods were investigated for using summaries of stratifications that do not require storing and processing the entire pixel-level stratifications. Methods that summarized satellite image-based 30 m x 30 m pixel stratifications at spatial scales up to 2400 ha produced stratified estimates of the mean that were generally within 5-percent of estimates for the same areas obtained using the pixel stratifications. In addition, stratified estimates of variances using summarized stratifications realized nearly all the gain in precision that was obtained with the underlying pixel stratifications.
  • McRoberts, North Central Research Station, USDA Forest Service, 1992 Folwell Avenue, Saint Paul, Minnesota, USA 5510 E-mail: rmcroberts@fs.fed.us (email)
  • Wendt, Region 9, USDA Forest Service, 626 East Wisconsin Avenue, Milwaukee, Wisconsin 53202, USA E-mail: dgw@nn.us
  • Liknes, North Central Research Station, USDA Forest Service, 1992 Folwell Avenue, Saint Paul, Minnesota, USA 5510 E-mail: gcl@nn.us

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles