Length of the regeneration period is a criterion commonly used for comparing different reforestation methods. The time factor should be evaluated using a realistic system for long-term planning. In this paper the preliminary evaluation is made by simplified calculations based on the development series. The slow regeneration method is assumed to be otherwise equal to the rapid one but it has a 5- or 10-years delay at the beginning, and the rotation is thus the final cutting age plus 5- or 10-years delay. Cost of the time delay is taken to be the difference in reforestation costs that makes the rapid and the slow methods equivalent. Calculations are made using zero costs for the slow method; but if the cost of the slow method increases, the critical cost difference decreases very slowly. The final cutting age and the regeneration method must be decided simultaneously. Therefore, the cost of the time delay is presented as a function of final cutting age. By maximizing the average annual revenue, rotation can be even increased if more rapid but more expensive regeneration method is used.
The PDF includes a summary in English.
Downy birch (Betula pubescens Ehrh.) stands on drained peatlands are often considered useless because they typically do not yield good-quality sawn timber. However, covering an area of ca. 0.5 million hectares and with total yields of up to 250 m3 ha–1, downy birch stands on peatlands in Finland have a potential for pulpwood and/or energy wood production. We examined the financial performance of alternative management regimes (with or without thinnings, different thinning intensities, several rotation lengths) combined with alternative harvesting methods (pulpwood, energy wood, or integrated, energy wood being delimbed stems or whole trees). We used data from 19 experimental stands, monitored for 20–30 years. For harvesting removals we considered both actual thinning removals and final-cutting removals with alternative timings that were based on the monitoring data. We assessed the profitability as a combination of the net present value of the birch generation and the bare land value of future generations of Norway spruce (Picea abies (L.) Karst.). The most profitable management was growing without thinnings until whole-tree final cutting at the stand age of 40–45 years with an advanced multi-tree harvesting method. In contrast, the standard method in whole-tree final cutting resulted in the lowest profitability, and an integrated method with the energy wood as delimbed stems was the best of the standard methods. Thinnings were unprofitable especially when aiming to produce energy wood, whereas aiming for pulpwood, light precommercial thinning was competitive. Commercial thinning at the traditional “pulpwood stage” had little effect on profitability. The best stand age for final cutting was 40–65 years – earlier for very dense stands and whole-tree energy wood harvesting with advanced method, later for precommercially thinned stands and pulpwood harvesting.