Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'forest biofuel'

Category : Research article

article id 318, category Research article
Sofia Backéus, Peder Wikström, Tomas Lämås. (2006). Modeling carbon sequestration and timber production in a regional case study. Silva Fennica vol. 40 no. 4 article id 318. https://doi.org/10.14214/sf.318
Keywords: boreal forest; carbon sequestration; optimization; forest biofuel; forest management planning
Abstract | View details | Full text in PDF | Author Info
Forests make up large ecosystems and by the uptake of carbon dioxide can play an important role in mitigating the greenhouse effect. In this study, mitigation of carbon emissions through carbon uptake and storage in forest biomass and the use of forest biofuel for fossil fuel substitution were considered. The analysis was performed for a 3.2 million hectare region in northern Sweden. The objective was to maximize net present value for harvested timber, biofuel production and carbon sequestration. A carbon price for build-up of carbon storage and for emissions from harvested forest products was introduced to achieve an economic value for carbon sequestration. Forest development was simulated using an optimizing stand-level planning model, and the solution for the whole region was found using linear programming. A range of carbon prices was used to study the effect on harvest levels and carbon sequestration. At a zero carbon price, the mean annual harvest level was 5.4 million m3, the mean annual carbon sequestration in forest biomass was 1.48 million tonnes and the mean annual replacement of carbon from fossil fuel with forest biofuel was 61 000 tonnes. Increasing the carbon price led to decreasing harvest levels of timber and decreasing harvest levels of forest biofuel. Also, thinning activities decreased more than clear-cut activities when the carbon prices increased. The level of carbon sequestration was governed by the harvest level and the site productivity. This led to varying results for different parts of the region.
  • Backéus, SLU, Dept. of Forest Resource Management and Geomatics, SE-901 83 Umeå, Sweden E-mail: sofia.backeus@resgeom.slu.se (email)
  • Wikström, SLU, Dept. of Forest Resource Management and Geomatics, SE-901 83 Umeå, Sweden E-mail: pw@nn.se
  • Lämås, SLU, Dept. of Forest Resource Management and Geomatics, SE-901 83 Umeå, Sweden E-mail: tl@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles