Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'green-tree retention'

Category : Research article

article id 1219, category Research article
Thomas P. Sullivan, Druscilla S. Sullivan. (2014). Diversifying clearcuts with green-tree retention and woody debris structures: conservation of mammals across forest ecological zones. Silva Fennica vol. 48 no. 5 article id 1219. https://doi.org/10.14214/sf.1219
Keywords: clearcutting; green-tree retention; small mammals; coniferous forests; ecological zones; Myodes gapperi; population dynamics; red-backed voles; woody debris structures
Highlights: Species diversity of small mammals increased with structural complexity left on clearcut sites; Productivity of red-backed vole populations was higher in sites with green-tree retention (GTR) and windrows of woody debris; GTR and windrows may provide additive effect for providing habitat to conserve mammals on clearcuts.
Abstract | Full text in HTML | Full text in PDF | Author Info
We tested the hypotheses (H) that on newly clearcut-harvested sites, (H1) abundance and species diversity of the forest-floor small mammal community, and (H2) abundance, reproduction, and recruitment of red-backed voles (Myodes gapperi Vigors), would increase with higher levels of structural retention via green-tree retention (GTR) and woody debris (dispersed and constructed into windrows). Study areas were located in three forest ecological zones in southern British Columbia, Canada. For H1, mean total abundance did generally increase with the gradient of retained habitat structure. Mean species richness and diversity were similar among treatment sites but did show an increasing gradient with structural compexity. For H2, mean abundance, reproduction, and recruitment of M. gapperi were higher in GTR and windrow sites than those without retained structures. There was a positive relationship between mean abundance of M. gapperi and total volume of woody debris across treatments. This study is the first investigation of the responses of forest-floor small mammals to an increasing gradient of retained habitat structure via GTR and woody debris on clearcuts. Our assessment of a combination of these two interventions suggested a potentially strong additive effect that could be cautiously extrapolated across three forest ecological zones. With the advent of low levels of GTR on clearcuts, woody debris structures should help provide some habitat to conserve forest mammals on harvest openings.
  • Sullivan, Department of Forest and Conservation Sciences, Faculty of Forestry, University of BC, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 E-mail: tom.sullivan@ubc.ca (email)
  • Sullivan, Applied Mammal Research Institute, 11010 Mitchell Avenue, Summerland, BC, Canada V0H 1Z8 E-mail: dru.sullivan@appliedmammal.com
article id 451, category Research article
Thomas P. Sullivan, Druscilla S. Sullivan, Pontus M. F. Lindgren, Douglas B. Ransome. (2010). Green-tree retention and life after the beetle: stand structure and small mammals 30 years after salvage harvesting. Silva Fennica vol. 44 no. 5 article id 451. https://doi.org/10.14214/sf.451
Keywords: biodiversity; stand structure; Pseudotsuga menziesii; ecological indicators; green-tree retention; small mammals; mountain pine beetle; Pinus contorta; salvage harvest
Abstract | View details | Full text in PDF | Author Info
We report on a retrospective investigation of the impacts of salvage harvesting of lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats.), killed by an outbreak of mountain pine beetle (Dendroctonus ponderosae Hopk.) in the 1970s, with variable retention of Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco). Our inference to biodiversity was coniferous stand structure and four mammal species: the southern red-backed vole (Myodes gapperi Vigors), common shrew (Sorex cinereus Kerr), red squirrel (Tamiasciurus hudsonicus Erxleben) and northern flying squirrel (Glaucomys sabrinus Shaw). We tested hypotheses that, at 30 years after salvage harvest of beetle-killed lodgepole pine trees, (1) abundance and diversity of stand structure, and (2) abundance of mammal species, will increase with higher levels of green-tree retention (GTR). Stand structure attributes and small mammals were sampled during 2005–2008 in young pine stands, with a range of GTR seed-trees (none, dispersed, and aggregated Douglas-fir), and uncut forest in south-central British Columbia, Canada. Diameters and heights of Douglas-fir and lodgepole pine and basal area of total conifers supported hypothesis (1). Mean abundance of the red-backed vole was consistently higher (2.3 to 6.4 times) in the uncut forest than other stands. Overall mean patterns of abundance for common shrews, red squirrels, and northern flying squirrels were similar among treatment stands. Mean abundance of the red-backed vole supported hypothesis (2), but numbers of the other three species did not. There is “life after the beetle” at 30 years after salvage harvesting, and this was enhanced by GTR.
  • Sullivan, Department of Forest Sciences, Faculty of Forestry, University of BC, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 E-mail: tom.sullivan@ubc.ca (email)
  • Sullivan, Department of Forest Sciences, Faculty of Forestry, University of BC, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 E-mail: dss@nn.ca
  • Lindgren, Applied Mammal Research Institute, 11010 Mitchell Avenue, Summerland, BC, Canada V0H 1Z8 E-mail: pmfl@nn.ca
  • Ransome, Applied Mammal Research Institute, 11010 Mitchell Avenue, Summerland, BC, Canada V0H 1Z8 E-mail: dbr@nn.ca

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles