The aim of this study was to examine the development of the cold acclimation of silver birch (Betula pendula Roth) seedlings. The effect of fertilization was also studied. The seedlings were two-year-old. As a comparison stump sprouts from the near-by forest were used. The seedlings were treated in temperatures of +5°C (= control), –5°C and –15°C four times with conductivity measurements and with ocular inspection.
There were no significant differences in cold acclimation between different fertilization treatments or between the fertilized seedlings and stump sprouts. This may have been due to the rapid cooling rate. The cold acclimation of the seedlings was registered well by the changes in the relative conductivity values. The differences between the relative conductivity values of different temperature treatments in August and the beginning of September were significant. However, in the end of September and especially October the values no longer differed significantly. Correlation proved good between the relative electrical conductivity tests and the ocular inspections of the damages.
The PDF includes a summary in English.
The aim of the investigation was to study natural regeneration of Norway spruce (Picea abies (L.) Karst.) in drained peatlands and frost injuries in seedlings, and to compare microclimates of the regeneration areas. The experiments included peatlands in Satakunta in Western Finland. Restocking of the areas with seedlings and their survival was followed in 1935-40 at sample plots that were mainly 1 are large.
Susceptibility to freezing was shown to be dependent on the stage of development of the shoots. Shoots that have just begun to grow contain little water, and withstand better freezing temperatures than shoots in later stages of growth. Damages to the seedlings were observed when the temperatures decreased to -2.8–-4.3 °C. The most severe damage to a seedling was caused by the death of the leading shoot by spring frost.
Norway spruce regenerates easily on moist peatlands, but peatlands with dry surface tend to have little or no seedlings. The species regenerated better in marshy sites than correspondingly fertile mineral soil sites. However, it needs shelter to avoid frost damage. On clear cut spruce swamp the undergrowth spruce seedlings that were left in the site got severe frost damage. If the site had birch (Betula sp.) coppice or undergrowth, spruce seedlings survived in their shelter depending on the height and density of the birch trees. To be effective, the protective forest should have relatively even crown cover. Young spruce seedlings could grow well even under relatively dense birch stand.
The PDF includes a summary in German.