Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'mixed stands'

Category : Climate resilient and sustainable forest management – Research article

article id 23075, category Climate resilient and sustainable forest management – Research article
Lauri Männistö, Jari Miina, Saija Huuskonen. (2024). How to utilize natural regeneration of birch to establish mixed spruce-birch forests in Finland? Silva Fennica vol. 58 no. 3 article id 23075. https://doi.org/10.14214/sf.23075
Keywords: Betula pendula; Picea abies; Betula pubescens; mixed model; Chapman-Richards; mixed stands
Highlights: Naturally emerging birch admixture provides a sufficient starting point for mixed forest in young, planted spruce stands; Creating mixed forest is a time sensitive process, as different growth patterns among tree species might cause a situation where one tree species suppresses the other, leading to monoculture or two-storied mixed forest; Birch admixture should be retained during early cleaning.
Abstract | Full text in HTML | Full text in PDF | Author Info

Mixed forests are known for their ability to provide a wide range of ecosystem services. Such forests have higher biodiversity compared to monocultures, are resilient against disturbances and may mitigate the effects of climate change. Despite well-known benefits, there is still little information on how these forests should be established and managed. The aim of this study was to describe the early growth dynamics of current boreal young mixed stands of planted Norway spruces (Picea abies (L.) Karst.) and naturally regenerated birches (Betula spp.). We collected data from 9  stands planted for spruce 8–14 years ago in Southern and Central Finland. Stem analysis was conducted to 144 spruces and to 144 birches to determine previous growth. We modelled the height and diameter development of individual trees in relation to tree age at stump height using non-linear mixed Chapman-Richards model. There were no significant differences between spruce and seed-origin birch in diameter growth at stump height, but the initial height increments of natural birches were larger than those of planted spruces. However, planted spruces were able to keep up with the height development of birches, if spruces received a head start over naturally regenerated seed-origin birch for two growing seasons. Thus, naturally regenerated birch admixture can be utilized to establish single-storied spruce-birch mixtures, and the admixture should be retained during the early cleaning of planted spruce stands.

  • Männistö, Natural Resources Institute Finland (Luke), Natural resources, Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID https://orcid.org/0009-0009-0213-1972 E-mail: lauri.mannisto@luke.fi (email)
  • Miina, Natural Resources Institute Finland (Luke), Natural resources, Yliopistokatu 6 B, FI-80100 Joensuu, Finland ORCID https://orcid.org/0000-0002-8639-4383 E-mail: jari.miina@luke.fi
  • Huuskonen, Natural Resources Institute Finland (Luke), Natural resources, Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0001-8630-3982 E-mail: saija.huuskonen@luke.fi

Category : Research article

article id 23077, category Research article
Timo Domisch, Saija Huuskonen, Juho Matala, Ari Nikula. (2024). Interactive effects of moose browsing and stand composition on the development of mixed species seedling stands. Silva Fennica vol. 58 no. 4 article id 23077. https://doi.org/10.14214/sf.23077
Keywords: boreal forest; tree species; Alces alces; ungulates; moose damage; mixed stands; meta-analysis
Highlights: We conducted meta-analyses assessing effect sizes of moose exclusion on seedling density and height, as well as regressions between stand density and deciduous seedling proportion and effect sizes; The more deciduous trees in a seedling stand, the smaller was the fencing effect, but at some point, the conifer seedling growth was impaired by too many deciduous seedlings. At the same time, the protective fencing effect increased with stand density; An appropriate deciduous admixture in conifer-dominated mixed seedling stands seems to improve moose damage tolerance.
Abstract | Full text in HTML | Full text in PDF | Author Info

The moose (Alces alces L.), a common large herbivore in the boreal region, impairs forest regeneration by browsing on tree seedlings and saplings. Moose prefer deciduous species, but during winter more coniferous seedlings are used. We used meta-analyses, separately for deciduous and coniferous seedlings, for evaluating whether excluding moose browsing affected seedling density and height. In addition, we compared (1) deciduous seedling proportion, (2) stand density, (3) elapsed time from fencing and (4) estimated moose density with moose exclusion effect sizes. Fencing had a positive effect on coniferous seedling height. With more deciduous trees in a seedling stand, the fencing effect for both seedling height and density of coniferous seedlings decreased. On the other hand, the fencing effects increased with denser stands. At some point effect sizes turned to negative, and conifer species varied in their response to browsing. This implies that deciduous seedlings can protect conifers from browsing by moose up to some mixing ratio, but when deciduous seedling densities are too high, their negative effect increases, presumably through increased competition. Our results suggest that a moderate deciduous admixture in conifer-dominated mixed seedling stands can decrease moose damage but also underline the significance of timely silvicultural measures to minimize the negative effects of excessive deciduous seedlings and too dense stands. Due to differences in coniferous and deciduous species, as well as their compositions and amounts in studied experiments, more studies adjusted to local conditions are still needed to give exact measures for silvicultural recommendations.

  • Domisch, Natural Resources Institute Finland (Luke), Natural Resources, Yliopistokatu 6B, FI-80100 Joensuu, Finland ORCID https://orcid.org/0000-0001-7026-1087 E-mail: timo.domisch@luke.fi (email)
  • Huuskonen, Natural Resources Institute Finland (Luke), Natural Resources, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: saija.huuskonen@luke.fi
  • Matala, Natural Resources Institute Finland (Luke), Natural Resources, Yliopistokatu 6B, FI-80100 Joensuu, Finland ORCID https://orcid.org/0000-0002-5867-5057 E-mail: juho.matala@luke.fi
  • Nikula, Natural Resources Institute Finland (Luke), Natural Resources, Ounasjoentie 6, FI-96200 Rovaniemi, Finland ORCID https://orcid.org/0000-0001-8372-8440 E-mail: ari.nikula@luke.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles