Current issue: 58(5)
The main stem of young Scots pine (Pinus sylvestris L.) trees was cut off halfway along the current leading shoot and the two previous years’ leading shoots to simulate moose (Alces alces) damage. Trees of the same size were chosen as controls before treatments. The experiment was inspected ten years after artificial stem breakage. Removing the current leading shoot and the second shoot did not essentially affect the height and diameter growth of the trees. Removal down to the third shoot reduced the height as well as diameter growth. The average loss in growth was equivalent to less than one year’s growth. When the stem was cut off at the second or third shoot, stem crookedness and the presence of knots resulted in stem defects that will subsequently reduce the sawtimber quality. A high proportion of the stem defects will obviously still be visible at the first thinning cutting. Removing injured trees as pulpwood and pruning the remaining parts of cut stems evidently improves the quality of pine stand with moose damage.
The PDF includes an abstract in Finnish.
Monoterpene hydrocarbon contents of needles in Scots pine (Pinus sylvestris L.) plants both damaged and untouched by the moose (Alces alces L.) were compared in the study. The material was collected in an 8-year-old plantation in Central Finland. Needle samples were taken from the topmost shoot whorl of the plants in the middle of April, 1976. Only minor differences were found between the plant groups. Thus, terpenes in pine presumably play no important role in the browsing preference by moose.
The PDF includes a summary in Finnish.
The increase in moose (Alces alces) population of Finland in 2000th century has caused significant damages in agriculture and forestry. Amendment was made to the Game Law to compensate damage by moose to agricultural crops from state funds. It has been suggested already in 1936 that compensations should be paid for the damages caused to the forests as well. Finally, in 1956 the Government appointed a committee to study the quality and quantity of the damages caused by moose to the young stands. The committee carried out an inquiry about the extent of the damage in 1956–1957, in which 12,000 private forest holdings were studied.
According to the study, moose cause damage mainly to young Scots pine stands in Southwestern Finland and Western Finland, and the districts of Uusimaa-Häme, East Häme, South Karelia and East Savo. However, the number of forest holdings suffering from damage was relatively low, about 5.6% in the whole country in 1951–1956. The damage is concentrated on Scots pine-, aspen, and birch-dominated young stands. The study of the level of the damage showed, that only 14% of the pine and 17% of stands of other tree species should be reforested due to the damage.
The committee suggests that compensation is paid for those damages that require reforestation. Reforestation would be affected with the help of State relief funds under the provision of the Act on Forest Improvement. The owner would also receive a tax reduction for a lost growing season. In addition, attention to moose damages in the forests should be taken into account when moose hunting permissions are issued.
The PDF includes a summary in English.
The establishment of moose (Alces alces L.) winter feeding sites, their utilization and their effect on damage to young Scots pine (Pinus sylvestris L.) plantations was studied in Ruokolahti-Imatra area in Eastern Finland in 1987–89. During the period, the density in the area was about 3–5 moose/ 1,000 ha.
Six feeding sites were established by fertilization, offering mineral lics and the tops of aspen and Scot pine and by salting the tops of pine. The moose preferred the feeding site to control areas during both summer and winter. In winter browsing was very heavy, especially in those areas located in or close to traditional wintering areas. In winter no moose were seen in the summer habitats.
The extent of, and fluctuations in moose damage were studied in 47 Scots pine plantations in the immediate surroundings of the feeding sites (29 plantations), control areas (18 plantations) and also 68 randomly selected pine plantations. Before the experiment began in 1987 four plantations had been seriously damaged. During the study period only one plantation was seriously damaged. However, it could not be conclusively proved that damage to the pine plantations had been reduced as a result of the feeding sites. The results of the study can be put into practice elsewhere to create better living conditions for moose in their winter habitats. However, the food offered at the feeding site should be in the right proportion to the number of animals wintering in the area, so that the risk of damage to nearby plantations would be kept as small as possible.
The PDF includes a summary in Finnish.
The moose (Alces alces L.), a common large herbivore in the boreal region, impairs forest regeneration by browsing on tree seedlings and saplings. Moose prefer deciduous species, but during winter more coniferous seedlings are used. We used meta-analyses, separately for deciduous and coniferous seedlings, for evaluating whether excluding moose browsing affected seedling density and height. In addition, we compared (1) deciduous seedling proportion, (2) stand density, (3) elapsed time from fencing and (4) estimated moose density with moose exclusion effect sizes. Fencing had a positive effect on coniferous seedling height. With more deciduous trees in a seedling stand, the fencing effect for both seedling height and density of coniferous seedlings decreased. On the other hand, the fencing effects increased with denser stands. At some point effect sizes turned to negative, and conifer species varied in their response to browsing. This implies that deciduous seedlings can protect conifers from browsing by moose up to some mixing ratio, but when deciduous seedling densities are too high, their negative effect increases, presumably through increased competition. Our results suggest that a moderate deciduous admixture in conifer-dominated mixed seedling stands can decrease moose damage but also underline the significance of timely silvicultural measures to minimize the negative effects of excessive deciduous seedlings and too dense stands. Due to differences in coniferous and deciduous species, as well as their compositions and amounts in studied experiments, more studies adjusted to local conditions are still needed to give exact measures for silvicultural recommendations.