Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'multi-response'

Category : Research article

article id 24031, category Research article
Jaakko Repola, Jaana Luoranen, Saija Huuskonen, Mikko Peltoniemi, Päivi Väänänen, Karri Uotila. (2024). Biomass models for young planted Norway spruce and naturally regenerated silver birch, aspen and rowan trees. Silva Fennica vol. 58 no. 5 article id 24031. https://doi.org/10.14214/sf.24031
Keywords: deciduous trees; Picea abies; tree biomass; model; multi-response
Highlights: Needle biomass was the greatest tree component of young spruce trees, and its proportion of whole biomass was 40-50%; The proportion of foliage biomass showed a decreasing tendency with tree height for all tree species; The existing models (Repola 2008, 2009) were not suitable for predicting spruce and birch biomass growing in young planted stands allocating too much biomass to roots and too little to crown.
Abstract | Full text in HTML | Full text in PDF | Author Info

We developed tree level biomass (dry weight) models for Norway spruce (Picea abies [L.] H. Karst.), silver birch (Betula pendula Roth), rowan (Sorbus aucuparia L.) and aspen (Populus tremula L.) growing in young spruce dominated seedling stands with high mixture of broadleaves. The study material was collected from three planted Norway spruce seedling stands located on mineral soil in southern Finland. Biomass models were estimated by individual tree component (stem, living branches, foliage, stump, and roots with diameter of 2 mm) by using a multi-response approach (seemingly unrelated regression), which estimated the parameters of the sub-models (tree component) simultaneously. Even though the application and generalization of the developed models can be restricted by the limited material, they provide new information of seedling biomass allocation and more reliable biomass predictions for spruce and birch growing in young seedling stand compared with those of the commonly applied biomass models (Repola 2008, 2009) in Finland. Repola’s models (2008, 2009) tended to produce biased predictions for crown and below-ground biomasses of seedlings by allocating too much biomass to roots and too little to needle and branches. In addition, this study provides biomass models for aspen and rowan, which were not previously available.

  • Repola, Natural Resources Institute Finland (Luke), Ounasjoentie 6, FI-96200 Rovaniemi, Finland ORCID https://orcid.org/0000-0001-7086-0549 E-mail: jaakko.repola@luke.fi (email)
  • Luoranen, Natural Resources Institute Finland (Luke), Juntintie 154, FI-77600 Suonenjoki, Finland ORCID https://orcid.org/0000-0002-6970-2030 E-mail: jaana.luoranen@luke.fi
  • Huuskonen, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0001-8630-3982 E-mail: saija.huuskonen@luke.fi
  • Peltoniemi, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0003-2028-6969 E-mail: mikko.peltoniemi@luke.fi
  • Väänänen, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: paivi.vaananen@luke.fi
  • Uotila, Natural Resources Institute Finland (Luke), Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: karri.uotila@luke.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles