Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'tree biomass'

Category : Article

article id 7682, category Article
Juha Nurmi. (1993). Heating values of the above ground biomass of small-sized trees. Acta Forestalia Fennica no. 236 article id 7682. https://doi.org/10.14214/aff.7682
Keywords: heating value; small-sized trees; whole-tree biomass; wood chemistry
Abstract | View details | Full text in PDF | Author Info

The heating values of wood, inner and outer bark, and foliage components of seven small-size tree species (Pinus sylvestris L., Picea abies (L.) H. Karst., Betula pubescens Erhr., B. pendula Roth, Alnus incana (L.) Moench, A. glutinosa (L.) Gaertn., Populus tremula L.) were studied. Significant differences were found between species within each component. However, the differences between species for weighted stem, crown and whole-tree biomass are very small. The weighted heating value of the crown mass is slightly higher than that of the stem in all species. The heating value of stem, crown and whole-tree material was found to increase with increasing latitude.

The effective heating value of wood correlated best with the lignin content, inner bark with carbohydrate, and outer bark with carbohydrates and the extractives soluble in alkalic solvents. It is suggested that the determination of the heating value might be used as an indicator of the cellulose content of coniferous wood.

The PDF includes a summary in Finnish.

  • Nurmi, E-mail: jn@mm.unknown (email)

Category : Research article

article id 24031, category Research article
Jaakko Repola, Jaana Luoranen, Saija Huuskonen, Mikko Peltoniemi, Päivi Väänänen, Karri Uotila. (2024). Biomass models for young planted Norway spruce and naturally regenerated silver birch, aspen and rowan trees. Silva Fennica vol. 58 no. 5 article id 24031. https://doi.org/10.14214/sf.24031
Keywords: deciduous trees; Picea abies; tree biomass; model; multi-response
Highlights: Needle biomass was the greatest tree component of young spruce trees, and its proportion of whole biomass was 40-50%; The proportion of foliage biomass showed a decreasing tendency with tree height for all tree species; The existing models (Repola 2008, 2009) were not suitable for predicting spruce and birch biomass growing in young planted stands allocating too much biomass to roots and too little to crown.
Abstract | Full text in HTML | Full text in PDF | Author Info

We developed tree level biomass (dry weight) models for Norway spruce (Picea abies [L.] H. Karst.), silver birch (Betula pendula Roth), rowan (Sorbus aucuparia L.) and aspen (Populus tremula L.) growing in young spruce dominated seedling stands with high mixture of broadleaves. The study material was collected from three planted Norway spruce seedling stands located on mineral soil in southern Finland. Biomass models were estimated by individual tree component (stem, living branches, foliage, stump, and roots with diameter of 2 mm) by using a multi-response approach (seemingly unrelated regression), which estimated the parameters of the sub-models (tree component) simultaneously. Even though the application and generalization of the developed models can be restricted by the limited material, they provide new information of seedling biomass allocation and more reliable biomass predictions for spruce and birch growing in young seedling stand compared with those of the commonly applied biomass models (Repola 2008, 2009) in Finland. Repola’s models (2008, 2009) tended to produce biased predictions for crown and below-ground biomasses of seedlings by allocating too much biomass to roots and too little to needle and branches. In addition, this study provides biomass models for aspen and rowan, which were not previously available.

  • Repola, Natural Resources Institute Finland (Luke), Ounasjoentie 6, FI-96200 Rovaniemi, Finland ORCID https://orcid.org/0000-0001-7086-0549 E-mail: jaakko.repola@luke.fi (email)
  • Luoranen, Natural Resources Institute Finland (Luke), Juntintie 154, FI-77600 Suonenjoki, Finland ORCID https://orcid.org/0000-0002-6970-2030 E-mail: jaana.luoranen@luke.fi
  • Huuskonen, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0001-8630-3982 E-mail: saija.huuskonen@luke.fi
  • Peltoniemi, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID https://orcid.org/0000-0003-2028-6969 E-mail: mikko.peltoniemi@luke.fi
  • Väänänen, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: paivi.vaananen@luke.fi
  • Uotila, Natural Resources Institute Finland (Luke), Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: karri.uotila@luke.fi
article id 1190, category Research article
Jaakko Repola, Kristina Ahnlund Ulvcrona. (2014). Modelling biomass of young and dense Scots pine (Pinus sylvestris L.) dominated mixed forests in northern Sweden. Silva Fennica vol. 48 no. 5 article id 1190. https://doi.org/10.14214/sf.1190
Keywords: boreal forests; pine; tree biomass; biomass models; unmanaged stands
Highlights: The biomass allocation to tree components is different in unmanaged and managed young stands; Higher foliage biomass and lower stem and branch biomass were detected in the unmanaged stands; Models for trees from young and dense stands provide better estimates of biomass in such stands than those based on data from managed stands.
Abstract | Full text in HTML | Full text in PDF | Author Info
Biomass models for the biomass of above-ground tree components of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies [L.] Karst.) and birch (Betula pendula Roth and Betula pubescens Ehrh.) in young dense Scots pine dominated forest stands in northern Sweden were constructed. Destructive above-ground biomass sampling was conducted in naturally generated young, dense, Scots pine dominated mixed stands. Three sampling campaigns were undertaken, the first in 1997 and 1998. The second was six years later (2003), and the last 13 years after the first (2010). In total, 280 trees (126 Scots pine, 68 Norway spruce and 86 birches) were sampled from six different stands in northern Sweden. The sampled trees’ diameter at breast height (dbh) was in the range 1–22 cm (Scots pine), 1–21 cm (Norway spruce) and 1–11 cm (birch). Biomass predictions were tested using our models and the widely used biomass models originally constructed for managed stands. The results showed that the biomass allocation to tree components is different in unmanaged and managed young stands; higher foliage biomass and lower stem and branch biomass were detected in the unmanaged stands. The overall conclusion is that the biomass models for managed stands did not produce satisfactory biomass estimates in unthinned, dense, young stands.
  • Repola, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail: jaakko.repola@metla.fi (email)
  • Ahnlund Ulvcrona, SLU, Forest Biomaterials and Technology, Skogsmarksgränd, SE-901 83 Umeå, Sweden E-mail: kristina.ulvcrona@slu.se
article id 184, category Research article
Jaakko Repola. (2009). Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica vol. 43 no. 4 article id 184. https://doi.org/10.14214/sf.184
Keywords: pine; tree biomass; biomass equations; spruce
Abstract | View details | Full text in PDF | Author Info
In this study, biomass equations for the above- and below-ground tree components of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies [L.] Karst.) were developed. The models were based on 908 pine trees and 613 spruce trees collected in 77 stands located on mineral soil, and represented a wide range of stand and site conditions in Finland. The whole data set consisted of three sub data sets: 33 temporary sample plots, five thinning experiments, and the control plots of 39 fertilization experiments. The biomass equations were estimated for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots. In the data analysis, a multivariate procedure was applied in order to take into account the statistical dependence among the equations. Three multivariate models for above-ground biomass and one for below-ground biomass were constructed. The multivariate model (1) was mainly based on tree diameter and height, and additional commonly measured tree variables were used in the multivariate models (2) and (3). Despite the unbalanced data in terms of the response variables, the statistical method generated equations that enable more flexible application of the equations, and ensure better biomass additivity compared to the independently estimated equations. The equations provided logical biomass predictions for a number of tree components, and were comparable with other functions used in Finland and Sweden even though the study material was not an objective, representative sample of the tree stands in Finland.
  • Repola, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail: jaakko.repola@metla.fi (email)
article id 236, category Research article
Jaakko Repola. (2008). Biomass equations for birch in Finland. Silva Fennica vol. 42 no. 4 article id 236. https://doi.org/10.14214/sf.236
Keywords: birch; tree biomass; biomass functions; biomass of tree components
Abstract | View details | Full text in PDF | Author Info
Biomass equations were compiled for the above- and below-ground tree components of birch (Betula pendula Roth and Betula pubescens Ehrh.). The equations were based on 127 sample trees in 24 birch stands located on mineral soil sites. The study material consisted of 20 temporary plots and ten plots from four thinning experiments with different thinning intensities (unthinned, moderately and heavily thinned plots). The equations were estimated for the following individual tree components: stem wood, stem bark, living and dead branches, foliage, stump, and roots. In the data analysis, a multivariate procedure was applied in order to take into account the statistical dependency among the equations. Three multivariate variance component models were constructed for the above-ground biomass components, and one for the below-ground biomass components. The multivariate model (1) was mainly based on tree diameter and height, and in the multivariate models (2) and (3) additional commonly measured tree variables were used. The equations provided logical biomass predictions for a number of tree components, and were comparable with other functions used in Finland and Sweden. The applied statistical method generated equations that gave more reliable biomass estimates than the equations presented earlier. Furthermore, the structure of the multivariate models enables more flexible application of the equations, especially for research purposes.
  • Repola, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail: jaakko.repola@metla.fi (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles