Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'biomass models'

Category : Research article

article id 1190, category Research article
Jaakko Repola, Kristina Ahnlund Ulvcrona. (2014). Modelling biomass of young and dense Scots pine (Pinus sylvestris L.) dominated mixed forests in northern Sweden. Silva Fennica vol. 48 no. 5 article id 1190. https://doi.org/10.14214/sf.1190
Keywords: boreal forests; pine; tree biomass; biomass models; unmanaged stands
Highlights: The biomass allocation to tree components is different in unmanaged and managed young stands; Higher foliage biomass and lower stem and branch biomass were detected in the unmanaged stands; Models for trees from young and dense stands provide better estimates of biomass in such stands than those based on data from managed stands.
Abstract | Full text in HTML | Full text in PDF | Author Info
Biomass models for the biomass of above-ground tree components of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies [L.] Karst.) and birch (Betula pendula Roth and Betula pubescens Ehrh.) in young dense Scots pine dominated forest stands in northern Sweden were constructed. Destructive above-ground biomass sampling was conducted in naturally generated young, dense, Scots pine dominated mixed stands. Three sampling campaigns were undertaken, the first in 1997 and 1998. The second was six years later (2003), and the last 13 years after the first (2010). In total, 280 trees (126 Scots pine, 68 Norway spruce and 86 birches) were sampled from six different stands in northern Sweden. The sampled trees’ diameter at breast height (dbh) was in the range 1–22 cm (Scots pine), 1–21 cm (Norway spruce) and 1–11 cm (birch). Biomass predictions were tested using our models and the widely used biomass models originally constructed for managed stands. The results showed that the biomass allocation to tree components is different in unmanaged and managed young stands; higher foliage biomass and lower stem and branch biomass were detected in the unmanaged stands. The overall conclusion is that the biomass models for managed stands did not produce satisfactory biomass estimates in unthinned, dense, young stands.
  • Repola, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail: jaakko.repola@metla.fi (email)
  • Ahnlund Ulvcrona, SLU, Forest Biomaterials and Technology, Skogsmarksgränd, SE-901 83 Umeå, Sweden E-mail: kristina.ulvcrona@slu.se
article id 458, category Research article
Sakari Tuominen, Kalle Eerikäinen, Anett Schibalski, Markus Haakana, Aleksi Lehtonen. (2010). Mapping biomass variables with a multi-source forest inventory technique. Silva Fennica vol. 44 no. 1 article id 458. https://doi.org/10.14214/sf.458
Keywords: National Forest Inventory; remote sensing; biomass models; biomass maps
Abstract | View details | Full text in PDF | Author Info
Map form information on forest biomass is required for estimating bioenergy potentials and monitoring carbon stocks. In Finland, the growing stock of forests is monitored using multi-source forest inventory, where variables are estimated in the form of thematic maps and area statistics by combining information of field measurements, satellite images and other digital map data. In this study, we used the multi-source forest inventory methodology for estimating forest biomass characteristics. The biomass variables were estimated for national forest inventory field plots on the basis of measured tree variables. The plot-level biomass estimates were used as reference data for satellite image interpretation. The estimates produced by satellite image interpretation were tested by cross-validation. The results indicate that the method for producing biomass maps on the basis of biomass models and satellite image interpretation is operationally feasible. Furthermore, the accuracy of the estimates of biomass variables is similar or even higher than that of traditional growing stock volume estimates. The technique presented here can be applied, for example, in estimating biomass resources or in the inventory of greenhouse gases.
  • Tuominen, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: sakari.tuominen@metla.fi (email)
  • Eerikäinen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: ke@nn.fi
  • Schibalski, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany E-mail: as@nn.de
  • Haakana, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: mh@nn.fi
  • Lehtonen, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: al@nn.fi
article id 340, category Research article
Petteri Muukkonen, Raisa Mäkipää, Raija Laiho, Kari Minkkinen, Harri Vasander, Leena Finér. (2006). Relationship between biomass and percentage cover in understorey vegetation of boreal coniferous forests. Silva Fennica vol. 40 no. 2 article id 340. https://doi.org/10.14214/sf.340
Keywords: upland soils; peatlands; biomass models; ground vegetation
Abstract | View details | Full text in PDF | Author Info
In the present study, the aboveground biomass of the understorey vegetation of boreal coniferous forests was modelled according to the percentage cover. A total of 224 observations from 22 stands in upland forests and 195 observations from 14 different studies in peatland forests were utilized for the present analyses. The relationships between biomass and percentage cover can be used in ecosystem and carbon-cycle modelling as a rapid nondestructive method for estimation of the aboveground biomass of lichens, bryophytes, herbs and grasses, and dwarf shrubs in upland forests and bottom and field layers in peatland forests.
  • Muukkonen, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: petteri.muukkonen@metla.fi (email)
  • Mäkipää, Finnish Forest Research Institute, Unioninkatu 40 A, FI-00170 Helsinki, Finland E-mail: rm@nn.fi
  • Laiho, Department of Forest Ecology, P.O. Box 24, FI-00014 University of Helsinki, Finland E-mail: rl@nn.fi
  • Minkkinen, Department of Forest Ecology, P.O. Box 24, FI-00014 University of Helsinki, Finland E-mail: km@nn.fi
  • Vasander, Department of Forest Ecology, P.O. Box 24, FI-00014 University of Helsinki, Finland E-mail: hv@nn.fi
  • Finér, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: lf@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles