Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'multi-stem'

Category : Research note

article id 311, category Research note
Dan Bergström, Urban Bergsten, Tomas Nordfjell, Tomas Lundmark. (2007). Simulation of geometric thinning systems and their time requirements for young forests. Silva Fennica vol. 41 no. 1 article id 311. https://doi.org/10.14214/sf.311
Keywords: bioenergy; forest technology; multi-stem
Abstract | View details | Full text in PDF | Author Info
In Fennoscandia, large areas that have not been subjected to pre-commercial thinning (PCT), and thus support dense stands, are becoming suitable for harvesting biomass. However, efficient systems for harvesting biomass from young stands have not yet been developed. In order to optimise biomass harvesting it is here hypothesized that the handling unit should not be a single tree but a corridor area, i.e., all trees in a specific area should be harvested in the same crane movement cycle. Three types of corridor harvesting approaches (using accumulating felling heads for geometric harvesting in two different patterns) were compared in terms of time required to fell a corridor of standardised size. Corridors are defined as strips of harvested areas between conventional strip-roads. Harvests were simulated in two types of stands, first thinning (FT) and delayed PCT stands, in which the spatial positions of the trees had been mapped. The differences in simulated time consumption per corridor were minor when the only variable changed was the corridor pattern. However, there were ca. 2-fold and 3-fold differences in simulated time consumption per corridor between the harvesting approaches for the FT stand and the PCT-stand, respectively. Furthermore, area handling (felling head accumulating all trees corridor-wise, with no restrictions on the accumulated number of trees except for a certain load limit) was found to give up to 2.4-fold increases in productivity compared to a single-tree (reference) approach for the FT stand. In conclusion, the simulation results clearly show the benefits of applying area-harvesting systems in young, dense stands.
  • Bergström, SLU, Dept. of Forest Resource Management, SE-901 83 Umeå, Sweden E-mail: db@nn.se (email)
  • Bergsten, SLU, Dept. of Forest Ecology and Management, SE-901 83 Umeå, Sweden E-mail: ub@nn.se
  • Nordfjell, SLU, Dept. of Forest Resource Management, SE-901 83 Umeå, Sweden E-mail: tn@nn.se
  • Lundmark, SLU, Vindeln Experimental Forests, Svartberget Field Station, SE-922 91 Vindeln, Sweden E-mail: tl@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles