Current issue: 58(5)
This work aimed to tackle a timber harvest scheduling problem by simultaneously integrating into the analysis two forestry products derived from the same species: the timber and the pine nut. For this purpose, three management scenarios were proposed: two in which each of the productions is maximised separately, and a third mixed where, in each management unit, the product to which the silvicultural effort should be devoted is decided. After defining a set of objectives, and optimising the rotation length, a multi-criteria model based on goal programming was considered since no feasible solutions have been obtained when employing linear programming. The results in our case study show how the feasible solutions reached can be more attractive for the manager. Specifically, the area to be devoted to timber and cone/pine-nut production was computed in a scenario where the optimal silviculture (oriented towards timber or pine nuts) in each stand was selected, and it was concluded that the area allocated to pine nuts should be notably greater. This situation is the opposite of the current management.
The sap yield of birches (Betula pendula Roth and B. pubescens Ehrh.) was modelled as a function of tree diameter (girth) at breast height, as well as site and stand characteristics measured and reported by citizen scientists representing mainly non-industrial private forest owners in the South Savo, North Karelia, and Northern Ostrobothnia regions in Finland. Birches (tree species not recorded) growing on both mineral and peatland sites were tapped during the springs of 2019 and 2020. Citizen scientists were mainly voluntary forest owners who received the instructions and equipment (spouts, drop lines and buckets) for collecting sap from three birches of different diameters in the same birch stand. Citizen scientists were instructed to measure and report the sap yield and girth of the trees, as well as stand characteristics from the forest resource data, if available. Based on the linear mixed model fitted to the data, the sap yield increased with the increasing tree diameter and mean stand height, and varied between years, stands, and trees; between-region variation was not significant. In a birch stand, the simulated total sap yield ha–1 was depended on the average tree size and the stem number ha–1 and was at its highest just before the first commercial thinning and again before the second thinning. The sap model can be used to predict the necessary sap yield in profitability analyses for sap tapping.