Drying of pulpwood bolts of Scots pine (Pinus sylvestris L.), birch (Betula spp.) and Norway spruce (Picea abies (L.) H. Karst.) was studied by measuring the drying of sample bolts placed in experimental piles. The results revealed that the main factors affecting timber drying are debarked surface area, moisture content at the time of felling and the size of the bolt. Furthermore, pine and spruce bolts located in the upper part of the pile dry better than bolts near the ground.
The investigation of green weight changes of whole piles of pine and birch was based on data collected in 1987–91. The green weight of piles was dependent mainly on storage time and on region; effect of weather variables could not be distinguished. Specific calibrating coefficients for motor-manual and mechanical cutting were included in the green weight equations.
Comparison between green weight equations and detected weight losses of sample piles indicates that fitted models seem to produce at least approximate results for the green weights, the said results thus lending themselves to be utilized as part of a transportation cost model.
The PDF includes an abstract in Finnish.
The aim of this study was to investigate how the weight loss and water content of cold stored plants depend on the storage conditions, and if there is a clear connection between these factors and the field survival of the planting stock. The experiments were carried out in a climate chamber at about +2°C and at three moisture levels (about 70, 85, and 95%) from November 1968 to May 1969. Three-year-old seedlings of Scots pine (Pinus sylvestris L.) average length 127 mm, diameter 3.5 mm and the top/root-ratio of fresh weight 1.93, were stored in open and sealed plastic bags. In addition, a transpiration retardant (Silvaplast) was used. The plastic bags (10 plants each) were weighted every 4. week. The remaining 270 seedlings were planted out and inspected after one growing season.
Although the experiment was made in a small scale, the results showed clearly that plant mortality, varying between 3 and 97%, was due to the storage conditions. The weight loss ranged between 2 and 50%, and the correlation between the weight loss and the mortality in the field was high. The water content of the seedlings was about 61%. The correlation between water content and survival was very high. Thus, the determination of weight loss or water content could be a useful method in observing the changes of water balance of the seedling stock during winter-storage. Further investigations are needed to show the tolerable rate of drying out for different sorts of plants. The Silvaplast-treatment had no visible effect either on the drying out or on the field survival.
The PDF includes a summary in English.