The objectives of this study were to record residual stand damage during harvesting operations and evaluate the influence of factors such as distance of the tree from the strip road, machine parts, operational phase, on the occurrence of tree wounds. The machine was a farm tractor equipped with a crane mounted on the front axle and a single grip harvester head. The study was carried out in two stands located in Southeast Sweden. Stand 1 was a 30-year-old Norway spruce (Picea abies (L.) H. Karst.) plantation on an afforested pasture while stand 2 was a 90-year-old mixed stand of Norway spruce, Scots pine (Pinus sylvestris L.), birch (Betula pendula Roth) and aspen (Populus tremula L.).
The mean damage percentage was 6.3% for the first stand and 6.5% for the second stand. Sixty-five percent of the wounds were less than 50 cm2, with 91% of the damage occurring on the stem and 91% of the damage on or below the root collar. Sixty-six percent of the wounds produced by the stem under processing or by the harvesting head while only 10% of the wounds were produced by the tractor wheel. Damaged trees were distributed evenly in the crane reach zone. Significant differences were found between rut depths after one, two, four and six passes of the tractor in stand 1.
Understanding the characteristics of unutilized biomass resources, such as small-diameter trees from biomass-dense thinning forests (BDTF) (non-commercially-thinned forests), can provide important information for developing a bio-based economy. The aim of this study was to describe the areal distribution, characteristics (biomass of growing stock, tree height, etc.) and harvesting potential of BDTF in Sweden. A national forest inventory plot dataset was imported into a geographical information system and plots containing BDTF were selected by applying increasingly stringent constraints. Results show that, depending on the constraints applied, BDTF covers 9–44% (2.1–9.8 M ha) of the productive forest land area, and contains 7–34% of the total growing stock (119–564 M OD t), with an average biomass density of 57 OD t ha–1. Of the total BDTF area, 65% is located in northern Sweden and 2% corresponds to set-aside farmlands. Comparisons with a study from 2008 indicate that BDTF area has increased by at least 4% (about 102 000 ha), in line with general trends for Sweden and Europe. Analyses revealed that the technical harvesting potential of delimbed stemwood (over bark, including tops) from BDTF ranges from 3.0 to 6.1 M OD t yr–1 (7.5 to 15.1 M m3 yr–1), while the potential of whole-tree harvesting ranges from 4.3 to 8.7 M OD t yr–1 (10.2 to 20.6 M m3 yr–1) depending on the scenario considered. However, further technological developments of the harvest and supply systems are needed to utilize the full potential of BDTF.