Dwarf shrub layer is an important component of boreal and hemiboreal forest ecosystems that has received little attention, particularly regarding its structural diversity, which, however, could serve as an additional proxy for habitat quality. Dimensions of bilberry (Vaccinium myrtillus L.) ramets were assessed in two sites in Latvia covered by dry oligotrophic Scots pine (Pinus sylvestris L.) stands 10–230 years of age. In total, 20 sampling plots (10×10 m) with 156 subplots (1×1 m) were sampled and 630 bilberry ramets analysed. The dimensions of ramets (age, diameter, and height) and cover of bilberry increased with stand age. The age of the studied ramets ranged 2–13 years; 5–6 years-old ramets were most frequent in all stands. The skewness of the distribution of the ramet dimensions shifted with stand age, leaning towards the higher values. Lower structural diversity of ramets was observed in stands 50–100 years of age. The highest diversity of ramet age structure occurred in stands younger than 150 years, whereas the oldest and largest ramets mostly occurred in the older stands (>150 years). Considering structural diversity of ramets, recovery of bilberry after stand-replacing disturbance (e.g. clearcut) was a continuous process, similarly to that observed in tree layer.
Long-term (47 years) effect of experimental whole tree harvesting (WTH) with a heavy soil scarification on ground cover vegetation was assessed in a dry nutrient-poor Scots pine (Pinus sylvestris L.) stand in Latvia. Neighbouring conventionally managed young (10 years) and mature (119 years) stands of the same type were used for comparison. Higher species richness was observed in the WTH stand compared to conventionally managed young and mature stands (24, 18 and 16 species, respectively), likely due to the profound disturbance. The Shannon diversity index was higher in the young than in the WTH and mature stands (2.36, 1.77 and 1.63, respectively); still, the composition and structure of ground cover vegetation in WTH was more similar to the mature stand. Nevertheless, the occurrence of oligotrophic species in the WTH stand suggested decreased soil nutrient content and potential development of different plant community. Hence, such method might be considered for restoration of oligotrophic stands. Nevertheless, the period of 47 years appeared sufficient for the ground cover vegetation to recover after the WTH.