Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Piermaria Corona

Category : Research article

article id 10247, category Research article
Agnese Marcelli, Walter Mattioli, Nicola Puletti, Francesco Chianucci, Damiano Gianelle, Mirko Grotti, Gherardo Chirici, Giovanni D' Amico, Saverio Francini, Davide Travaglini, Lorenzo Fattorini, Piermaria Corona. (2020). Large-scale two-phase estimation of wood production by poplar plantations exploiting Sentinel-2 data as auxiliary information. Silva Fennica vol. 54 no. 2 article id 10247. https://doi.org/10.14214/sf.10247
Keywords: national forest inventories; Sentinel-2; design-based inference; first-phase tessellation stratified sampling; regression estimator; second-phase stratified sampling; simulation study
Highlights: A two-phase sampling for large-scale assessment of fast-growing forest crops is developed; Vegetation indices from Sentinel-2 are exploited in a linear regression estimator; The linear regression estimator turns out to be better than the estimator based on the sole sample information; The approach represents a reference for supporting outside-forest resource monitoring and assessment.
Abstract | Full text in HTML | Full text in PDF | Author Info

Growing demand for wood products, combined with efforts to conserve natural forests, have supported a steady increase in the global extent of planted forests. Here, a two-phase sampling strategy for large-scale assessment of the total area and the total wood volume of fast-growing forest tree crops within agricultural land is presented. The first phase is performed using tessellation stratified sampling on high-resolution remotely sensed imagery and is sufficient for estimating the total area of plantations by means of a Monte Carlo integration estimator. The second phase is performed using stratified sampling of the plantations selected in the first phase and is aimed at estimating total wood volume by means of an approximation of the first-phase Horvitz-Thompson estimator. Vegetation indices from Sentinel-2 are exploited as freely available auxiliary information in a linear regression estimator to improve the design-based precision of the estimator based on the sole sample data. Estimators of the totals and of the design-based variances of total estimators are presented. A simulation study is developed in order to check the design-based performance of the two alternative estimators under several artificial distributions supposed for poplar plantations (random, clustered, spatially trended). An application in Northern Italy is also reported. The regression estimator turns out to be invariably better than that based on the sole sample information. Possible integrations of the proposed sampling scheme with conventional national forest inventories adopting tessellation stratified sampling in the first phase are discussed.

  • Marcelli, University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems, Viterbo, Italy; Fondazione Edmund Mach, Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, San Michele all’Adige, Italy E-mail: agnese.marcelli@student.unisi.it (email)
  • Mattioli, University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems, Viterbo, Italy; CREA, Research Centre for Forestry and Wood, Arezzo, Italy E-mail: walter.mattioli@crea.gov.it
  • Puletti, CREA, Research Centre for Forestry and Wood, Arezzo, Italy E-mail: nicola.puletti@crea.gov.it
  • Chianucci, CREA, Research Centre for Forestry and Wood, Arezzo, Italy E-mail: fchianucci@gmail.com
  • Gianelle, Fondazione Edmund Mach, Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, San Michele all’Adige, Italy E-mail: damiano.gianelle@fmach.it
  • Grotti, CREA, Research Centre for Forestry and Wood, Arezzo, Italy; University of Roma La Sapienza, Department of Architecture and Design, Rome, Italy E-mail: mirkogrotti@gmail.com
  • Chirici, University of Firenze, Department of Agriculture, Food, Environment and Forestry, Florence, Italy E-mail: gherardo.chirici@unifi.it
  • D' Amico, University of Firenze, Department of Agriculture, Food, Environment and Forestry, Florence, Italy E-mail: giovanni.damico@unifi.it
  • Francini, University of Firenze, Department of Agriculture, Food, Environment and Forestry, Florence, Italy; University of Molise, Department of Agricultural, Environmental and Food Sciences, Campobasso, Italy E-mail: saverio.francini@gmail.com
  • Travaglini, University of Firenze, Department of Agriculture, Food, Environment and Forestry, Florence, Italy E-mail: davide.travaglini@unifi.it
  • Fattorini, University of Siena, Department of Economics and Statistics, Siena, Italy E-mail: lorenzo.fattorini@unisi.it
  • Corona, CREA, Research Centre for Forestry and Wood, Arezzo, Italy E-mail: piermaria.corona@crea.gov.it

Category : Research note

article id 1549, category Research note
Francesco Chianucci, Luca Salvati, Tessa Giannini, Ugo Chiavetta, Piermaria Corona, Andrea Cutini. (2016). Long-term response to thinning in a beech (Fagus sylvatica L.) coppice stand under conversion to high forest in Central Italy. Silva Fennica vol. 50 no. 3 article id 1549. https://doi.org/10.14214/sf.1549
Keywords: continuous cover forestry; thinning; Leaf Area Index; coppice management; Plant Canopy Analyzer
Highlights: Canopy recovery after medium-heavy thinning reveals the prompt response of beech to intensive thinning cycles; Active management practices accelerate the transition from coppice to high forest.
Abstract | Full text in HTML | Full text in PDF | Author Info

European beech (Fagus sylvatica L.) forests have a long history of coppicing, but the majority of formerly managed coppices are currently under conversion to high forest. The long time required to achieve conversion requires a long-term perspective to fully understand the implication of the applied conversion practices. In this study, we showed results from a long-term (1992–2014) case-study comparing two management options (natural evolution and periodic thinning) in a beech coppice in conversion to high forest. Leaf area index, litter production, radiation transmittance and growth efficiency taken as relevant stand descriptors, were estimated using both direct and indirect optical methods. Overall, results indicated that beech coppice showed positive and prompt responses to active conversion practices based on periodic medium-heavy thinning. A growth efficiency index showed that tree growth increased as the cutting intensity increased. Results from the case study supported the effectiveness of active conversion management from an economic (timber harvesting) and ecological (higher growth efficiency) point of view.

  • Chianucci, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Forestry Research Centre, viale Santa Margherita 80, 52100 Arezzo, Italy ORCID http://orcid.org/0000-0002-5688-2060 E-mail: fchianucci@gmail.com (email)
  • Salvati, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Research Centre for the Soil-Plant System, via della Navicella 2–4, 00184 Roma, Italy E-mail: bayes00@yahoo.it
  • Giannini, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Forestry Research Centre, viale Santa Margherita 80, 52100 Arezzo, Italy E-mail: tessa.giannini@entecra.it
  • Chiavetta, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Forestry Research Centre, viale Santa Margherita 80, 52100 Arezzo, Italy E-mail: ugo.chiavetta@entecra.it
  • Corona, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Forestry Research Centre, viale Santa Margherita 80, 52100 Arezzo, Italy E-mail: piermaria.corona@unitus.it
  • Cutini, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria – Forestry Research Centre, viale Santa Margherita 80, 52100 Arezzo, Italy E-mail: andrea.cutini@entecra.it

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles