Growing demand for wood products, combined with efforts to conserve natural forests, have supported a steady increase in the global extent of planted forests. Here, a two-phase sampling strategy for large-scale assessment of the total area and the total wood volume of fast-growing forest tree crops within agricultural land is presented. The first phase is performed using tessellation stratified sampling on high-resolution remotely sensed imagery and is sufficient for estimating the total area of plantations by means of a Monte Carlo integration estimator. The second phase is performed using stratified sampling of the plantations selected in the first phase and is aimed at estimating total wood volume by means of an approximation of the first-phase Horvitz-Thompson estimator. Vegetation indices from Sentinel-2 are exploited as freely available auxiliary information in a linear regression estimator to improve the design-based precision of the estimator based on the sole sample data. Estimators of the totals and of the design-based variances of total estimators are presented. A simulation study is developed in order to check the design-based performance of the two alternative estimators under several artificial distributions supposed for poplar plantations (random, clustered, spatially trended). An application in Northern Italy is also reported. The regression estimator turns out to be invariably better than that based on the sole sample information. Possible integrations of the proposed sampling scheme with conventional national forest inventories adopting tessellation stratified sampling in the first phase are discussed.
We investigated if coarse-resolution satellite data from the MODIS sensor can be used for regional monitoring of insect disturbances in Fennoscandia. A damage detection method based on z-scores of seasonal maximums of the 2-band Enhanced Vegetation Index (EVI2) was developed. Time-series smoothing was applied and Receiver Operating Characteristics graphs were used for optimisation. The method was developed in fragmented and heavily managed forests in eastern Finland dominated by Scots pine (Pinus sylvestris L.) (pinaceae) and with defoliation of European pine sawfly (Neodiprion sertifer Geoffr.) (Hymenoptera: Diprionidae) and common pine sawfly (Diprion pini L.) (Hymenoptera: Diprionidae). The method was also applied to subalpine mountain birch (Betula pubescens ssp. Czerepanovii N.I. Orlova) forests in northern Sweden, infested by autumnal moth (Epirrita autumnata Borkhausen) and winter moth (Operophtera brumata L.). In Finland, detection accuracies were fairly low with 50% of the damaged stands detected, and a misclassification of healthy stands of 22%. In areas with long outbreak histories the method resulted in extensive misclassification. In northern Sweden accuracies were higher, with 75% of the damage detected and a misclassification of healthy samples of 19%. Our results indicate that MODIS data may fail to detect damage in fragmented forests, particularly when the damage history is long. Therefore, regional studies based on these data may underestimate defoliation. However, the method yielded accurate results in homogeneous forest ecosystems and when long-enough periods without damage could be identified. Furthermore, the method is likely to be useful for insect disturbance detection using future medium-resolution data, e.g. from Sentinel‑2.