article id 656,
category
Research article
Abstract |
View details
|
Full text in PDF |
Author Info
The aim of the study was to compare the effects of phosphorus fertilisers of different solubility and different phosphorus doses. The material was collected from 8 field experiments situated on drained peatlands in southern and central Finland (60°–65°N). The sites were drained, oligotrophic pine fens and pine bogs, which had been fertilised between 1961 and 1977 with different combinations of N, K and P. In 1991–94 stand measurements and foliar and peat sampling were carried out on 162 sample plots. Apatite, rock phosphate and superphosphate affected basal area growth to a rather similar extent. However, apatite slightly surpassed superphosphate and rock phosphate at the end of the study period in two hollow-rich S. fuscum bogs. Higher doses of phosphorus did not significantly increase the basal area growth. The foliar phosphorus concentrations clearly reflected the effect of the P fertilisation. Especially on the pine bogs basic fertilisation with 66 kg P/ha maintained the needle phosphorus concentrations at a satisfactory level for more than 25 years after fertilisation. The amount of phosphorus in the 0–20 cm peat layer was not significantly increased either by basic fertilisation or refertilisation. The phosphorus reserves in the peat in the individual experiments were between 88 and 327 kg/ha. There was a strong correlation between the amounts of phosphorus and iron in the peat. Large amounts of iron in peat may reduce the solubility and availability of phosphorus. According to the foliar phosphorus concentrations in the basic-fertilised plots, the need for refertilisation seems to be unnecessary during the 25-year postfertilisation period at least. None of the basic fertilisation treatments seriously retarded the basal area growth compared to the refertilised treatments. There seems to be a greater shortage of potassium than of phosphorus, because the foliar potassium concentrations and the amounts of potassium in the 0–20 cm peat layer were very low in several of the experiments.
-
Silfverberg,
The Finnish Forest Research Institute, P.O. Box 18, FIN-01301 Vantaa, Finland
E-mail:
klaus.silfverberg@metla.fi
-
Hartman,
The Finnish Forest Research Institute, P.O. Box 18, FIN-01301 Vantaa, Finland
E-mail:
mh@nn.fi