Fast-growing hybrids of Populus L. have an increasing importance as a source of renewable energy and as industrial wood. Nevertheless, the long-term sensitivity of Populus hybrids to weather conditions and hence to possible climatic hazards in Northern Europe have been insufficiently studied, likely due to the limited age of the trees (short rotation). In this study, the climatic sensitivity of ca. 65-year-old hybrid poplars (Populus balsamifera L. × P. laurifolia Ledeb.), growing at two sites in the western part of Latvia, and ca. 55-year-old hybrid aspens (Populus tremuloides Michx. × P. tremula L.), growing in the eastern part of Latvia, have been studied using classical dendrochronological techniques. The high-frequency variation of tree-ring width (TRW) of hybrid poplar from both sites was similar, but it differed from hybrid aspen due to the diverse parental species and geographic location of the stands. Nevertheless, some common tendencies in TRW were observed for both hybrids. Climatic factors influencing TRW were generally similar for both hybrids, but their composition differed. The strength of climate-TRW relationships was similar, but the hybrid poplar was affected by a higher number of climatic factors. Hybrid poplar was sensitive to factors related to water deficit in late summer in the previous and current years. Hybrid aspen was sensitive to conditions in the year of formation of tree-ring. Both hybrids also displayed a reaction to temperature during the dormant period. The observed climate-growth relationships suggest that increasing temperatures might burden the radial growth of the studied hybrids of Populus.
The projections of vegetation zones suggest increasing growth potential of European beech (Fagus sylvatica L.) in Northern Europe. Such changes usually are most apparent in the marginal populations. In this study, survival of young beech growing in an experimental plantation under canopy of a mixed coniferous stand in the central part of Latvia was assessed after 33 years since the establishment. The planting material originated from an older experimental stand in the western part of Latvia. Although, at present, the studied plantation could be considered as the northeasternmost beech stand in Europe, a good survival was observed – ca. 80% of the seedlings have survived, despite several cold spells of ca. –30 °C that occurred during the recent three decades. Additionally, some self-regeneration i.e. branch sprouting was observed. The saplings were rather low, as their mean height was ca. 4 m. Still, some individuals, which were growing under canopy openings, reached considerable dimensions; their height and stem diameter exceeded 10 m and 9 cm, respectively. The distribution of sapling dimensions had the reverse-J shape that is typical for shade tolerant species, indicating normal development of the beech regrowth. The crowns of saplings were narrow and the stems were spindly, suggesting that trees with a good stem quality might be bred. Hence, our results suggest that environmental conditions in the central part of Latvia have been satisfactory for beech, thus encouraging establishment of more extensive trials within the region.