Current issue: 58(5)
The aim of this present study was to elucidate the quality of seed of foreign tree species grown in Finland, and the factors which have affected the quality of the seed yields. Due to the smallness of the material, however, no far-fetching conclusions can be drawn. The bulk of the seeds were collected in the fall of 1964. The samples of seeds were X-rayed and their classification to empty seeds and full seeds of four quality classes was done on the basis of the anatomical structures. The species studied (a total of 34 species) belonged to the following genera: Abies, Chamaecyparis, Larix, Picea, Pinus, Pseudotsuga, Thuja and Tsuga.
The percentage of empty seeds was throughout quite high. The reasons for the generation of empty seeds probably originate from the special nature of the stands from which the seeds were collected. As a rule, the stands were young and small in area, which may have caused weak pollination and self-pollination leading to embryo mortality. Also, insect damages were observed.
Seeds with albumen still discernible, although the embryo had died, occurred to some extent. In some Larix species, even the bulk of the seeds recorded as full belonged in this group.
The ripening of seeds with embryos was quite successful in spite of the fact that the temperature sum of the year of ripening was slightly below the average in Finland. For instance, all Abies species ripened almost completely.
According to the results, it can be expected that the tree species examined in this study are able to produce rich yields of good-quality seed in Finland, provided that the ovules are well pollinated and self-pollination does not take place to a large extent.
The PDF includes a summary in English.
The present study proposes to calculate the economic sequence of two of Finland’s three main tree species, Norway spruce (Picea abies (L.) H. Karst.) and silver birch (Betula pendula Roth) when planted on Oxalias-Myrtillus type sites where both species are equally suitable, on biological grounds. In addition, the accuracy and applicability of the present Finnish yield tables to an economic comparison is tested. Benefit/cost ratio was selected as criterion of profitableness. All future net incomes and costs were discounted into the planting time and added together. The ratio between the discounted net revenues and the discounted investment costs (later called profit ratio) was the criterion. There is no reliable method to forecast the future wood prices, therefore two price ratios, birch veneer timber to spruce pulpwood and birch cordwood to spruce pulpwood, were chosen as free variables. The economic sequence of the tree species was determined as the function of these variables.
The main conclusions are, first, that under the present price ratios spruce appears to be the better choice for the forest owner, and the most promising policy for changing the situation seems to decrease the production costs of plants in birch nurseries. Second, the present Finnish yield tables are not consistent or accurate enough to enable any sufficiently reliable economic comparisons of tree species in artificial regeneration. The possible error of difference between two rather uncertain estimates is big. More work is needed to construct a uniform system of yield tables covering all main tree species, all site types, all macro climate conditions and all types of regeneration.
The PDF includes a summary in English.