Two-year-old containerized Scots pine (Pinus sylvestris L.) seedlings, raised under different fertilization and watering regimes, were subjected to feeding preference tests with pine weevils (Hylobius abietis L.) in a bioassay. In the tests carried out with pairs of seedlings, the weevil preferred water-stressed seedlings to well-watered ones. In the case of well-watered seedlings, the weevil caused significantly more damage to NPK-fertilized seedlings than those given pure PK fertilization, or no fertilization at all. It is apparent that PK fertilization reduces, and water stress increases seedling susceptibility to weevil damage. The results support findings from field trials that water stress (planting shock) predisposes seedlings to weevil damage. Weevil resistance is discussed with respect to fertilization and water stress as determinants of seedling quality.
The PDF includes an abstract in Finnish.
The development of Scots pine (Pinus sylvestris L.) seedlings and damage caused by Hylobius abietis L. (Coleoptera, Curculionidae) were studied during a three-year period. Olfactory responses of H. abietis was studied in laboratory with several volatile oils isolated from different kinds of P. sylvestris seedlings. Resistance of seedlings against H. Abietis was evaluated in terms of their monoterpene composition. Three aspects of resistance (preference, antibiosis and tolerance) were evaluated separately. Seedling chemotype was found to be associated with these aspects of host resistance on only minor scale. Discussion was attached to a further search for host resistance arising from other properties and constituents of oleoresin. Height growth of the seedlings recovering from weevil damage was 86–91% compared to healthy seedlings.
The PDF includes a summary in English.
The aim of the present study was to establish, by means of planting experiments, the influence of different packing, heeling-in and watering as well as the length of the storage period on the development of Scots pine (Pinus sylvestris L.) seedlings, in all 2,090 seedlings, that had been lifted from the nursery bed in spring. The plants were packed in bundles and into plastic sacks in 1965 (6 storage methods) and in 1966 (3 storage methods). Control seedlings were planted without storing at the time when storage of the test material begun. The plantations were followed 3–4 years.
Storage for two weeks in the different ways and planting without storage gave similar results when seedling survival was compared. Storage in plastic sack proved to be as good as storage in bundles in a cellar, and healing-in in moist soil or in a drain were both usable methods. Watering the seedlings did not improve the results, which indicates that the storage caused no serious lack of water.
After four growing seasons an average of 19,6% of the seedlings of the 1965 experiment died, the bulk of them by the end of the first growing season. Despite control treatment, Hylobious abietis caused serious damages. In the plantations of the year 1966 mortality of the seedlings was under 5% by the end of third growing season. During the first two growing seasons after planting differences in growth of the seedlings stored in different ways could be observed in the plantations of the year 1965, but the differences levelled out later. In the plantations established in 1966 no differences in growth occurred.
The PDF includes a summary in English.
The aim of the study was to find out more about pine weevil (Hylobious abietis L.) injuries in Scots pine (Pinus sylvestris L.) seedling stands and their control by means of DDT. For this purpose, inventories were made of seedling stands established earlier. Control experiments were made on burnt areas by planting seedlings dipped in a DDT emulsion.
The results of the inventories show that injuries caused by pine weevils can, in certain circumstances, especially in seedling stands established by planting, cause the complete failure in artificial regeneration. The extent and quality of the injuries vary greatly according to planting method, treatment of the cutting area, age of the seedling stand, environmental factors, and weather conditions. The most extensive injuries occur in regeneration areas of old Norway spruce stands burnt after clear cutting and planted with Scots pine seedlings. Injuries are greater in seedling stands established by planting, especially after broadcast burning, than in seedling stands originating either from artificial or natural seeding. The quality of the patch for sowing or planting has a considerable effect on the quantity and character of the injuries: in a patch from which organic matter has been removed, injuries do not appear or they are slighter. Seedlings can be protected effectively and economically by dipping their tops up to the root collar, in a DDT emulsion before planting.
The PDF includes a summary in English.
Over 20% of regeneration operations will be on drained peatland in the next decade in Finland. There are only a few studies comparing the planting success and the risk of pine weevil (Hylobius abetis (L.) feeding damage on mineral soil and drained peatland. Thirty sites planted with Norway spruce (Picea abies (L.) H. Karst.) container seedlings in 2009 in Southern and Central Finland were inventoried three growing seasons after planting. Prediction models for the probability of survival, pine weevil damage and the presence of ground vegetation cover were done separately for peatland and mineral soil sites. The planting success was 17% lower on peatland sites (1379 surviving seedlings ha–1) than on mineral soil (1654 seedlings ha–1). The factors explaining the survival were the ground vegetation cover and type of the planting spot on the peatland, and the ground vegetation cover on mineral soil. On mineral soil, 76% of the planting spots were on cultivated mineral soil while on peatland only 28% of the seedlings were planted on similar spots. There were also fewer seedlings that were surrounded by dense ground vegetation on mineral soil (4%) than on peatland (14%). Pine weevil feeding damage did not differ significantly on peatland (23%) or mineral soil (18%). The more time there was from clear-cutting, the more the probability of pine weevil feeding damage was reduced on both soil classes. Additionally, cover vegetation in the vicinity of the seedlings increased on mineral soil. Cultivated planting spots, especially those covered by mineral soil, prevented pine weevil feeding and reduced the harmful effects of vegetation on the seedlings both on mineral soil and peatland.