article id 9947,
category
Research article
Eric R. Labelle,
Linus Huß.
(2018).
Creation of value through a harvester on-board bucking optimization system operated in a spruce stand.
Silva Fennica
vol.
52
no.
3
article id 9947.
https://doi.org/10.14214/sf.9947
Highlights:
Use of harvester on-board computer bucking optimization remains highly under-utilized in German forestry; Revenue per tree and harvesting productivity were both statistically higher with automatic bucking as compared to quality bucking during a thinning operation in a spruce dominated stand.
Abstract |
Full text in HTML
|
Full text in PDF |
Author Info
Tree bucking, defined as the process in which a stem is segmented into shorter logs of varying lengths, has a significant effect on the value adding potential of a forest enterprise. Because of its importance in terms of correct product and length combinations, improper bucking can lead to financial losses. In this study, two treatments (OFF: quality bucking performed by the operator while using hot keys and ON: automatic bucking using the optimized suggestions from the harvester on-board computer; OBC) were tested in a Norway spruce (Picea abies [L.] Karst.) dominated stand located in Germany. Both treatments had the aim to maximize the value of a stem. The research took place in an 80-year old spruce and beech stand under a regenerative cutting. Fully-mechanized harvesting was performed with an 8-wheel Ponsse Bear single-grip harvester equipped with a H8 harvesting head. Results indicated that the product recovery of the two treatments differed by 4% in undamaged trees (no broken tree-tops or stems) to the benefit of manual bucking. However, the revenue of trees subjected to optimized bucking were up to 4% higher (in average 3%) than those of the manual bucking once expressed on a per cubic meter basis. Moreover, the harvesting productivity of the ON treatment was at the maximum 17% higher compared to the OFF treatment. Based on the results from this case study, the use of an optimization software in Norway spruce dominated stands with the aim to maximize the value of single stems showed promising results.
-
Labelle,
Assistant Professorship of Forest Operations, Department of Ecology and Ecosystem Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising, Germany
E-mail:
eric.labelle@tum.de
-
Huß,
Assistant Professorship of Forest Operations, Department of Ecology and Ecosystem Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising, Germany
E-mail:
linus.huss@gmx.de
article id 356,
category
Research article
Abstract |
View details
|
Full text in PDF |
Author Info
The aim of this paper is to investigate different mathematical approaches to buck-to-order log merchandizing. A new bucking-to-order planning model using mixed integer programming was developed to determine the optimal production from a stand given different market constraints and forest inventory data. Three different approaches: market prices, target cutting patterns and adjusted price list were tested for generating cutting instructions to fulfill the plan created by the new planning model. The three approaches were evaluated in four test stands. The market prices approach simply applied the market prices to each stand. The target cutting patterns approach applied the sample cutting patterns generated from the planning model to the stand. The adjusted price list used a dynamic programming algorithm embedded in a search heuristic to adjust both the prices and small end diameters of log products to achieve the production goals of the planning models. The results showed that developing a buck-to-order plan is important in obtaining good order fulfillment. The target cutting patterns and adjusted price list approaches certainly out performed the market prices approach. This paper shows that these two approaches are capable of achieving excellent order fulfillment. Further development and testing is needed to determine which method is the best at generating cutting instructions for buck-to-order merchandizing.
-
Marshall,
Ensis Forests, Private Bag 3020, Rotorua, New Zealand
E-mail:
hamish.marshall@ensisjv.com
-
Murphy,
Forest Engineering Department, Oregon State University, Corvallis, Oregon 97331, USA
E-mail:
gm@nn.us
-
Boston,
Forest Engineering Department, Oregon State University, Corvallis, Oregon 97331, USA
E-mail:
kb@nn.us