Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'developmental stage'

Category : Article

article id 5536, category Article
Roar Skuterud, Jon Dietrichson. (1994). Budburst in detached birch shoots (Betula pendula) of different varieties winter-stored in darkness at three different temperatures. Silva Fennica vol. 28 no. 4 article id 5536. https://doi.org/10.14214/sf.a9176
Keywords: Betula pendula; climatic change; budburst; buds; frost; developmental stages; heat sums; threshold temperatures
Abstract | View details | Full text in PDF | Author Info

Budburst timing and the relationship to storage temperature and duration were investigated in four varieties (entries) of 1–2 metres tall silver birch (Betula pendula Roth) trees. A total of 2,160 shoots were sampled, and the material stores in darkness at 0, 3 or 6 °C from November 29, 1993. When the shoots were placed in storage, they had been through a period of 29 days with temperatures below 0°C (since October 15). By that time the autumn dormancy was assumed already broken, and the trees were expected to respond to increased temperature by bud development. On January 4, 1994, and on four subsequent dates, January 19, February 1, March 4 and March 17, shoots were taken out of storage and set in growth chambers at 9, 12 or 15°C. The time to budburst was recorded.

Duration of storage, storage temperatures and varieties were all highly significant for budburst. The interaction terms were of less statistical importance. Based on the contrast between the three different growth chamber environments, three different methods were used to calculate the threshold temperatures for each entry. In spite of the pre-selection of variable budburst performers, the threshold values, varying between 0°C to -2°C, could not be shown to be statistically different. According to the results, the time of budburst changes in accordance with both winter and spring temperatures, being extremely early after a mild winter and warm spring, given sufficient autumn chilling. The similarities in the threshold temperatures indicate that the ranking in earliness between varieties will most likely be the same from year to year without regard to climate change.

  • Skuterud, E-mail: rs@mm.unknown (email)
  • Dietrichson, E-mail: jd@mm.unknown
article id 5535, category Article
Mats Hannerz. (1994). Predicting the risk of frost occurrence after budburst of Norway spruce in Sweden. Silva Fennica vol. 28 no. 4 article id 5535. https://doi.org/10.14214/sf.a9175
Keywords: Norway spruce; Picea abies; Sweden; provenances; budburst; frost; developmental stages; heat sums
Abstract | View details | Full text in PDF | Author Info

Temperature sums required for budburst in various Norway spruce (Picea abies (L.) H. Karst.) provenances were determined, and weather statistics were then used to predict the risk of potentially damaging frosts at 11 locations in Sweden. Frost risk was quantified as the probability of a frost occurring within 100 day-degrees (two weeks) after budburst. The examples provided show that a spruce seedling from central Sweden has to sustain almost twice as many frost occassions as a seedling from Belorussia, when planted in southern and central Sweden. The method presented here can be used for mapping early summer frost risk in Sweden and for supporting provenance transfer guidelines.

  • Hannerz, E-mail: mh@mm.unknown (email)
article id 5351, category Article
Tapani Repo. (1988). Physical and physiological aspects of impedance measurements in plants. Silva Fennica vol. 22 no. 3 article id 5351. https://doi.org/10.14214/sf.a15508
Keywords: developmental stage; electrical impedance; cross-sectional area; frost resistance; temperature acclimation; physiology
Abstract | View details | Full text in PDF | Author Info

Electrical impedance characteristics of plant cells are dependent on such physiological factors as physiological condition, developmental stage, cell structure, nutrient status, water balance and temperature acclimation. In the measurements also such technical and physical factors as type of electrodes, frequency, geometry of the object, inter-electrode distance and temperature have an effect. These factors are discussed especially with respect to the impedance method in frost resistance studies of plants.

The PDF includes an abstract in Finnish.

  • Repo, E-mail: tr@mm.unknown (email)
article id 5001, category Article
Seppo Kellomäki. (1978). Recreational potential of a forest stand. Silva Fennica vol. 12 no. 3 article id 5001. https://doi.org/10.14214/sf.a14855
Keywords: developmental stage; ground vegetation; stand volume; trampling tolerance; reacreation
Abstract | View details | Full text in PDF | Author Info

The aim of the paper was to investigate the recreational potential of successional stand based on the suitability of the stands for different recreational activities and the trampling tolerance of ground cover. The relationship between selected recreational activities and the volume of the stands under study has been determined. These functions have been utilized in determining the potential of the successional stand for different recreational activities. Combining this information with trampling tolerance gave criteria for determining the recreational potential of a stand. The results emphasize the importance of varying the distribution of development stages in a recreational area and in its management.

The PDF includes a summary in Finnish.

  • Kellomäki, E-mail: sk@mm.unknown (email)

Category : Research article

article id 252, category Research article
Tuomo Kalliokoski, Pekka Nygren, Risto Sievänen. (2008). Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fennica vol. 42 no. 2 article id 252. https://doi.org/10.14214/sf.252
Keywords: Pinus sylvestris; Betula pendula; Picea abies; site type; branching pattern; influence area; developmental stage
Abstract | View details | Full text in PDF | Author Info
Root system architecture determines many of the vital functions of a tree, e.g. stability of anchorage and resource uptake. The shoot:root ratio is determined through the allocation of resources. Studies on below-ground architectural elements in boreal mixed forests are relatively scarce despite the fact that knowledge on below-ground interactions and allocation changes in relation to stand developmental stage and soil fertility is needed both in ecological and silvicultural research. In this study, sixty tree root systems of three different tree species, Betula pendula, Picea abies and Pinus sylvestris, were excavated in five mixed forest stands in order to quantify differences between the species and sites in terms of rooting behaviour. Root architecture differed greatly between the species, implying different solutions for the functions of root systems. Half of the P. sylvestris had developed a taproot as a response to anchorage needs, while P. abies correspondingly had pronounced secondary growth of proximal roots. Betula pendula had the most extensive root system, illustrating the greater demand of deciduous trees for water. Betula pendula was also the most sensitive to soil fertility: it favoured exploration on the poorest site, as illustrated by the high total root length, whereas on the most fertile site its strategy was to efficiently exploit soil resources through increased branching intensity. The results obtained in this study provide basic knowledge on the architectural characteristics of boreal tree root systems for use by forestry professionals and modellers.
  • Kalliokoski, The Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: tuomo.kalliokoski@metla.fi (email)
  • Nygren, Department of Forest Ecology, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: pn@nn.fi
  • Sievänen, The Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: rs@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles