Budburst timing and the relationship to storage temperature and duration were investigated in four varieties (entries) of 1–2 metres tall silver birch (Betula pendula Roth) trees. A total of 2,160 shoots were sampled, and the material stores in darkness at 0, 3 or 6 °C from November 29, 1993. When the shoots were placed in storage, they had been through a period of 29 days with temperatures below 0°C (since October 15). By that time the autumn dormancy was assumed already broken, and the trees were expected to respond to increased temperature by bud development. On January 4, 1994, and on four subsequent dates, January 19, February 1, March 4 and March 17, shoots were taken out of storage and set in growth chambers at 9, 12 or 15°C. The time to budburst was recorded.
Duration of storage, storage temperatures and varieties were all highly significant for budburst. The interaction terms were of less statistical importance. Based on the contrast between the three different growth chamber environments, three different methods were used to calculate the threshold temperatures for each entry. In spite of the pre-selection of variable budburst performers, the threshold values, varying between 0°C to -2°C, could not be shown to be statistically different. According to the results, the time of budburst changes in accordance with both winter and spring temperatures, being extremely early after a mild winter and warm spring, given sufficient autumn chilling. The similarities in the threshold temperatures indicate that the ranking in earliness between varieties will most likely be the same from year to year without regard to climate change.
Temperature sums required for budburst in various Norway spruce (Picea abies (L.) H. Karst.) provenances were determined, and weather statistics were then used to predict the risk of potentially damaging frosts at 11 locations in Sweden. Frost risk was quantified as the probability of a frost occurring within 100 day-degrees (two weeks) after budburst. The examples provided show that a spruce seedling from central Sweden has to sustain almost twice as many frost occassions as a seedling from Belorussia, when planted in southern and central Sweden. The method presented here can be used for mapping early summer frost risk in Sweden and for supporting provenance transfer guidelines.
Electrical impedance characteristics of plant cells are dependent on such physiological factors as physiological condition, developmental stage, cell structure, nutrient status, water balance and temperature acclimation. In the measurements also such technical and physical factors as type of electrodes, frequency, geometry of the object, inter-electrode distance and temperature have an effect. These factors are discussed especially with respect to the impedance method in frost resistance studies of plants.
The PDF includes an abstract in Finnish.
The aim of the paper was to investigate the recreational potential of successional stand based on the suitability of the stands for different recreational activities and the trampling tolerance of ground cover. The relationship between selected recreational activities and the volume of the stands under study has been determined. These functions have been utilized in determining the potential of the successional stand for different recreational activities. Combining this information with trampling tolerance gave criteria for determining the recreational potential of a stand. The results emphasize the importance of varying the distribution of development stages in a recreational area and in its management.
The PDF includes a summary in Finnish.