Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'genotype'

Category : Article

article id 5540, category Article
Anders Persson. (1994). How genotype and silviculture interact in forming timber properties. Silva Fennica vol. 28 no. 4 article id 5540. https://doi.org/10.14214/sf.a9180
Keywords: Pinus sylvestris; Picea abies; silviculture; wood properties; spacing; genotypes
Abstract | View details | Full text in PDF | Author Info

Independent of genotype, increased spacing results in increased branch diameter of Scots pine (Pinus sylvestris L.), but on different levels for different genotypes. Frequency of defects like spike knots and crooked stems are under stronger genetic than silvicultural control. Simultaneous improvement of rate of growth and timber properties is feasible. Deteriorating of both factors can happen rapidly at a negative selection. A defect like stem cracking of Norway spruce (Picea abies (L.) H. Karst.) only manifests itself under drought stress when certain genetic and environmental prerequisites are present, like high fertility and wide spacing. This emphasize the fact that new silvicultural methods may reveal genetic weaknesses.

  • Persson, E-mail: ap@mm.unknown (email)
article id 5068, category Article
S. A. Petrov. (1980). Quantitative analysis of the effect of genotype and environment in forest tree populations. Silva Fennica vol. 14 no. 1 article id 5068. https://doi.org/10.14214/sf.a15009
Keywords: heritability; population structure; population genetics; genotype; Symposiums; intrapopulation variability; environment; quantitative characteristics
Abstract | View details | Full text in PDF | Author Info

The paper discusses the theoretical basis of quantitative analysis of the effect of genotype and environment in forest trees. Perhaps the main problem in the understanding of the laws of intrapopulation variability of the species of woody forest plants is the study of the structure of their populations. It may be characterized by a number of parameters. The intrapopulation variability of quantitative characteristics appears as a result of environmental and genetic factors, but to determine the relative weight of these factors in a concrete case is not easy. The study of the structure of a population by its quantitative characteristics has a wider task: to establish the relevance of the hereditary differences of the individuals of a population. Also, the differences caused by diverse growth conditions and how they are reflected in the level of general phenotypic variability of the quantitative characteristics in a given population has to be identified. The author gives examples of assessment of heritability in forest trees.

The PDF includes a summary in Finnish.

  • Petrov, E-mail: sp@mm.unknown (email)

Category : Research article

article id 10163, category Research article
Uttam Thangjam, Uttam K. Sahoo, Pentile Thong. (2020). Characterization of morphometric, reproductive and seedling traits of Parkia timoriana in northeast India. Silva Fennica vol. 54 no. 1 article id 10163. https://doi.org/10.14214/sf.10163
Keywords: seed source; heritability; genotype; tree bean; variations
Highlights: Among provenances, Pherema (P1) Serchip (P10) and Jiribam (P7) were associated with stress tolerant and better quality seedlings.; P1 gave the best result for seed traits including high germinability, P10 showed highest seedling vigour, while P7 corresponds to high-quality pod related traits; Variations in morphological, germinative and seedling growth characters of seeds across provenance further illustrate the importance of site selection for the production of better quality trees.
Abstract | Full text in HTML | Full text in PDF | Author Info

We studied variations on different traits of Parkia timoriana (D.C.) Merr. in twelve provenances systematically from their source of origin to a controlled environment where representative seedlings were grown. Among the provenances, P1 gave the best result for seed traits including germination traits, P7 for pod traits and P10 for seedling vigour. Effects of seasonal distribution of rainfall and temperature on seed and pod traits were also determined by computing multiple regression analysis. The results displayed winter rainfall and summer temperature as the most important factor determining pod and seed traits. Latitude also significantly (P < 0.001) affected PWT (r = 0.52), SWP (r = 0.46) and SW (r = 0.50). A common garden study for germination and seedling growth indicated P1 and P10 provenance as the best among all. Seeds drawn from P10 gave the highest seedling vigour with an average growth rate of 0.61 cm/day from 90th to 180th day. Highest broad-sense heritability values (h2) were observed in germination traits, followed by seedling collar diameter. The lowest h2 was observed for seedling height.

  • Thangjam, Department of Forestry, School of Earth Sciences & Natural Resource Management, Mizoram University, Aizawl-796004, Mizoram, India ORCID https://orcid.org/0000-0003-1263-5348 E-mail: thangjam1987@gmail.com
  • Sahoo, Department of Forestry, School of Earth Sciences & Natural Resource Management, Mizoram University, Aizawl-796004, Mizoram, India ORCID https://orcid.org/0000-0002-6524-1775 E-mail: uksahoo_2003@rediffmail.com (email)
  • Thong, Department of Forestry, School of Earth Sciences & Natural Resource Management, Mizoram University, Aizawl-796004, Mizoram, India ORCID https://orcid.org/0000-0002-5358-181X E-mail: pentilethong@gmail.com
article id 7783, category Research article
Markku T. Lehtinen, Pertti Pulkkinen. (2017). Effects of Scots pine paternal genotypes of two contiguous seed orchards on the budset and frost hardening of first-year progeny. Silva Fennica vol. 51 no. 5 article id 7783. https://doi.org/10.14214/sf.7783
Keywords: Pinus sylvestris; provenance; conifer; environmental influence; pollen; genotype effect
Highlights: This environmentally controlled study on Scots pine demonstrated the effect of the paternal genotype on the budset and frost hardening of the progeny; With the applied study design, no significant indication of an environmental influence on the effect of the Scots pine paternal genotype was obtained.
Abstract | Full text in HTML | Full text in PDF | Author Info

In Scots pine (Pinus sylvestris L.), it has been shown that the parental conditions have a role in the phenological variation among first-year seedlings. For this reason, it is argued that they should be comprehensively controlled before estimating the parental genotype effects. This controlled-cross study examined the effects of a set of fathers of Scots pines on the timing of budset and autumn frost hardening of first-year seedlings. The paternal genotypes had either a northern or southern provenance, but had spent a period of over 25 years as grafts in a shared climatic environment in two closely located southern orchards. Pollen applied in the crosses was collected from these orchards in one year and all the maternal genotypes were pollinated in only one seed orchard. The results of freeze tests and budset observations of the consequent progeny were analysed and additionally compared with results obtained using seedlings from seed lots of natural forests in order to estimate the ability of northern paternal genotypes to maintain a northern effect under southern conditions. This environmentally controlled study demonstrated a significant effect of the paternal genotype on the budset and autumn frost hardening of first-year seedling of Scots pine. With the applied study design, no significant indication of an environmental influence on the effect of the paternal genotype was obtained. The accuracy of the observations is discussed. It is concluded that the results suggest a minor role of mutability in the effects of Scots pine paternal genotypes.

  • Lehtinen, University of Helsinki, Department of Agricultural Sciences, Latokartanonkaari 5 and 7, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: markku.t.lehtinen@helsinki.fi (email)
  • Pulkkinen, Natural Resources Institute Finland (Luke), Green Technology, Haapastensyrjäntie 34, FI-12600 Läyliäinen, Finland E-mail: pertti.pulkkinen@luke.fi
article id 901, category Research article
Luis A. Apiolaza, Rosa M. Alzamora. (2013). Building deployment portfolios for genotypes under performance instability. Silva Fennica vol. 47 no. 1 article id 901. https://doi.org/10.14214/sf.901
Keywords: Pinus radiata; wood quality; breeding objectives; clonal portfolio; deployment portfolio; genotype by environment interaction
Abstract | Full text in HTML | Full text in PDF | Author Info
We used portfolio theory to analyze the tradeoffs between returns and performance instability of deployment units for Pinus radiata D. Don. We considered three groups of 34 trees each grown to produce appearance lumber, structural lumber, or both. Risk was based on the variability of tree returns in scenarios of changing volume, wood stiffness and presence of resin defects due to genotype by environment interaction inducing both changes of scale and differential tree response to environmental scenarios. The return of structural trees was highly variable with a mean of 3.11 NZ $/stem/year, followed by appearance-structural trees (3.48 NZ $/stem/year). In contrast, appearance trees had the lowest returns (1.99 NZ $/stem/year) and variability. The portfolio model selected structural trees in high-risk scenarios, but selection was apportioned between structural and appearance-structural trees as the risk decreased. The model selected only appearance trees for high-risk aversion. The analysis also considered silvicultural regimes, where the appearance-structural regime was selected under high variability. As risk decreased the appearance grades regime was also selected. The structural regime was rarely selected due to the variability of stiffness between trees. Using genotypes improved for stiffness could increase the expected value and reduce variability for structural purposes, making the structural regime more appealing.
  • Apiolaza, School of Forestry, University of Canterbury, Private Bag 4800, 8042 Canterbury, New Zealand E-mail: luis.apiolaza@canterbury.ac.nz (email)
  • Alzamora, Instituto de Manejo Forestal, Universidad Austral, Valdivia, Chile E-mail: ralzamor@uach.cl

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles