Seed development was microscopically studied after controlled pollinations. In all the interspecific crosses incompatibility occured. In the following crosses the growth of all the pollen tubes stopped before they had penetrated through the nuclear cap: Picea abies (L.) Karst. x mariana, abies x jezoensis (and the reciprocal), abies x omorika (and the reciprocal), mariana x asperata, mariana x jezoensis and Picea abies x Pinus sylvestris L.
Some of the eggs were fertilized in the crosses Picea abies x glauca (and the reciprocal) abies x asperata, abies x koyamai, abies x obovata, mariana x omorika and jezoensis x omorika. Embryo degeneration was observed in all these crosses. All the embryos died in the crosses abies x glauca (and the reciprocal) as well as jezoensis x omorika. Adequate amounts of full seed for germination test was obtained from the crosses abies x asperata, abies x koyamai and abies x obovata. In all these crosses there were seeds which were able to germinate and the hybrids are now one growth season old.
The PDF includes a summary in English.
Resistance to browsing by mammals differs among birch species, and among origins and families of European white birch (Betula pendula Roth). The variation in resistance is large even among individual seedlings of the same family.
On the surface of the bark of European white birch seedlings there are resin droplets, and the number of droplets is strongly and positively correlated with resistance to browsing by hares. The resistance of European white birch apparently is not expensive metabolically because the rapid growth rate of seedlings was positively correlated with hare resistance, and no correlation was found between seedling size and vole resistance. In cafeteria experiments voles and hares were very discriminating in their feeding on birch seedlings. In field experiments, however, environmental heterogeneity partly masked differences in vole resistance among birch families. Fertilization of seedlings seems not to have a clear effect on resistance to hares. On the other hand, there were indications that greenhouse temperature had an effect on resistance to voles. Practical forestry applications of differences in resistance, e.g. use of species hybrids and clonal forestry, are discussed. The prospects for resistance breeding are good.
The PDF includes a summary in Finnish.
Fast-growing hybrids of Populus L. have an increasing importance as a source of renewable energy and as industrial wood. Nevertheless, the long-term sensitivity of Populus hybrids to weather conditions and hence to possible climatic hazards in Northern Europe have been insufficiently studied, likely due to the limited age of the trees (short rotation). In this study, the climatic sensitivity of ca. 65-year-old hybrid poplars (Populus balsamifera L. × P. laurifolia Ledeb.), growing at two sites in the western part of Latvia, and ca. 55-year-old hybrid aspens (Populus tremuloides Michx. × P. tremula L.), growing in the eastern part of Latvia, have been studied using classical dendrochronological techniques. The high-frequency variation of tree-ring width (TRW) of hybrid poplar from both sites was similar, but it differed from hybrid aspen due to the diverse parental species and geographic location of the stands. Nevertheless, some common tendencies in TRW were observed for both hybrids. Climatic factors influencing TRW were generally similar for both hybrids, but their composition differed. The strength of climate-TRW relationships was similar, but the hybrid poplar was affected by a higher number of climatic factors. Hybrid poplar was sensitive to factors related to water deficit in late summer in the previous and current years. Hybrid aspen was sensitive to conditions in the year of formation of tree-ring. Both hybrids also displayed a reaction to temperature during the dormant period. The observed climate-growth relationships suggest that increasing temperatures might burden the radial growth of the studied hybrids of Populus.