Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'quality function deployment'

Category : Research article

article id 1217, category Research article
Ulrich J. Wolfsmayr, Peter Rauch. (2014). Primary forest fuel supply chain: assessing barriers and drivers for the modal shift from truck to train. Silva Fennica vol. 48 no. 5 article id 1217. https://doi.org/10.14214/sf.1217
Keywords: biomass; multimodal transport; train transport; quality function deployment; house of quality
Highlights: For combined heat and power plants in Austria procuring forest fuels, the most competitive transport mode is road transport using walking-floor trucks; The main barriers for a modal shift are the plant managers’ negative experiences with the railroad; Rail transport has its benefits, when high volumes are needed and transport distances are long.
Abstract | Full text in HTML | Full text in PDF | Author Info
Multimodal primary forest fuel (PFF) transport using the railroad for main haulage has been quite uncommon to present, although it could provide considerable advantages in terms of economical, ecological and social parameters. Accordingly, the objective of this paper is to assess barriers and drivers for the modal shift from truck to train. As methodological tool, we are using the concept of Quality Function Deployment (QFD) with the House of Quality (HoQ) – an approach that has not been used in forest management so far. As the most important barriers for the modal shift from truck to train in PFF transport in Austria, the following were identified: (i) bioenergy plant managers have a negative opinion and negative experience regarding the railroad in terms of high prices, a lot of bureaucracy, etc.; (ii) absence of rail sidings or relatively short rail sidings not suitable for block trains; and (iii) unwillingness to invest in new supply or unloading systems. On the contrary, the most important drivers for a modal shift are: (i) multimodal PFF supply chains using trains can provide high volumes; (ii) increasing catchment areas for larger CHP plants result in increasing transport distances; and (iii) rail transport has less negative environmental and social impact than road transport.
  • Wolfsmayr, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel Straße 33, A-1180 Wien, Austria E-mail: ulrich.wolfsmayr@boku.ac.at (email)
  • Rauch, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel Straße 33, A-1180 Wien, Austria E-mail: peter.rauch@boku.ac.at

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles