Current issue: 58(5)
This study’s aim was to identify how the application season and the method of early cleaning (EC), the first stage of multistage pre-commercial thinning (PCT), affected the time consumption in EC and in the subsequent second PCT operation. The worktime in EC was recorded in the spring, summer, and autumn in 22 sites, which were either totally cleaned or point cleaned. Later, these sites were measured at the time of the second PCT. Time consumption was estimated in PCT, based on the removal of the sites. The time consumption in EC was 5.3 productive work hours (pwh) ha–1, 7.3 pwh ha–1, and 6.2 pwh ha–1 respectively in the spring, summer, and autumn. EC in the spring instead of the summer saved 27–30% of working time, depending on the cleaning method. Point cleaning was 0.8 pwh ha–1 quicker than total cleaning, but the difference was statistically insignificant. The second stage, PCT, was 1 pwh ha–1 slower to conduct in sites which had been early cleaned in the spring instead of the summer. However, at the entire management program level, EC applied in the spring or autumn instead of the summer saved 11% or 5% respectively of the total discounted costs (3% interest rate) of multistage pre-commercial thinning. Today, the commonest time to conduct EC is in the summer, which was the most expensive of the analyzed management alternatives here. We can expect savings in juvenile stand management in forestry throughout boreal conifer forests by rethinking the seasonal workforce allocation.
The time consumption (TC) of pre-commercial thinning (PCT) varies greatly among sites, stands and forest workers. The TC in PCT is usually estimated by field-assessed work difficulty factors. In this study, a linear mixed model for the TC in PCT was prepared by utilizing forest resources data (FRD). The modelling data included 11 848 and validation data included 3035 worksites with TC information recorded by forest workers within the period of 2008–2018. The worksites represented a range of site and stand conditions across a broad geographical area in Finland. Site and stand characteristics and previous management logically explained the TC in PCT. The more fertile the site, the more working time was needed in PCT. On sites of medium fertility, TC in the initial PCT increased with stand age by 0.5 h ha–1 yr–1. Site wetness increased the TC. PCT in summer was more time consuming than in spring. Small areas were more time consuming to PCT per hectare than larger ones. The between-forest worker variation involved in the TC was as high as 35% of the variation unexplained by the TC model. The coefficient of determination in validation data was 19.3%, RMSE 4.75 h ha–1 and bias –1.6%. The TC model based on FRD was slightly less precise than the one based on field-assessed work difficulty factors (removal quantity and type and terrain difficulty): RMSE 4.9 h ha–1 vs. 4.1 h ha–1 (52% vs. 43%). The TC model could be connected to forest information systems where it would facilitate the predictions of the labour costs of PCT without field-assessing work difficulty factors.