Mechanical site preparation methods that used tools mounted on lightweight excavators and that provided localised intensive preparation were tested in eight experimental sites across France where the vegetation was dominated either by Molinia caerulea (L.) Moench or Pteridium aquilinum (L.) Kuhn. Two lightweight tools (Deep Scarifier: DS; Deep Scarifier followed by Multifunction Subsoiler: DS+MS) were tested in pine (Pinus sylvestris L., Pinus nigra var. corsicana (Loudon) Hyl. or Pinus pinaster Aiton) and oak (Quercus petraea (Matt.) Liebl. or Quercus robur L.) plantations. Regional methods commonly used locally (herbicide, disk harrow, mouldboard plow) and experimental methods (repeated herbicide application; untreated control) were used as references in the experiments. Neighbouring vegetation cover, seedling survival, height and basal diameter were assessed over three to five years after plantation. For pines growing in M. caerulea, seedling diameter after four years was 37% and 98% greater in DS and DS+MS, respectively, than in the untreated control. For pines growing in P. aquilinum, it was 62% and 107% greater in the same treatments. For oak, diameter was only 4% and 15% greater in M. caerulea, and 13% and 25% greater in P. aquilinum, in the same treatments. For pines, the survival rate after four years was 26% and 32% higher in M. caerulea and 64% and 70% higher in P. aquilinum, in the same treatments. For oak, it was 3% and 29% higher in M. caerulea and 37% and 31% higher in P. aquilinum. Herbicide, when applied for three or four years after planting, provided the best growth performances for pines growing in M. caerulea and P. aquilinum and for oaks growing in P. aquilinum. For these species and site combinations, DS+MS and DS treatments reduced the neighbouring vegetation cover for one to four years following site preparation.
In the Nordic countries Finland, Norway and Sweden, the most common regeneration method is planting after clearcutting and, often, mechanical site preparation (MSP). The main focus of this study is to review quantitative effects that have been reported for the five main MSP methods in terms of survival and growth of manually planted coniferous seedlings of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) in clearcuts in these three countries. Meta analyses are used to compare the effects of MSP methods to control areas where there was no MSP and identify any relationships with temperature sum and number of years after planting. In addition, the area of disturbed soil surface and the emergence of naturally regenerated seedlings are evaluated. The MSP methods considered are patch scarification, disc trenching, mounding, soil inversion and ploughing. Studies performed at sites with predominately mineral soils (with an organic topsoil no thicker than 0.30 m), in boreal, nemo-boreal and nemoral vegetation zones in the three Fenno-Scandinavian countries are included in the review. Data from 26 experimental and five survey studies in total were compiled and evaluated. The results show that survival rates of planted conifers at sites where seedlings are not strongly affected by pine weevil (Hylobius abietis L.) are generally 80–90% after MSP, and 15–20 percent units higher than after planting in non-prepared sites. The experimental data indicated that soil inversion and potentially ploughing (few studies) give marginally greater rates than the other methods in this respect. The effects of MSP on survival seem to be independent of the temperature sum. Below 800 degree days, however, the reported survival rates are more variable. MSP generally results in trees 10–25% taller 10–15 years after planting compared to no MSP. The strength of the growth effect appears to be inversely related to the temperature sum. The compiled data may assist in the design, evaluation and comparison of possible regeneration chains, i.e. analyses of the efficiency and cost-effectiveness of multiple combinations of reforestation measures.