Current issue: 58(5)

Under compilation: 59(1)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'systematic thinning'

Category : Research article

article id 10462, category Research article
Yrjö Nuutinen, Jari Miina, Timo Saksa, Dan Bergström, Johanna Routa. (2021). Comparing the characteristics of boom-corridor and selectively thinned stands of Scots pine and birch. Silva Fennica vol. 55 no. 3 article id 10462. https://doi.org/10.14214/sf.10462
Keywords: biomass; forestry; first thinning; geometrical thinning; systematic thinning
Highlights: After boom-corridor thinning (BCT), the number of stems per hectare was higher than that after selective thinning. The number of future crop trees was at the same level; The removal of the simulated intermediate thinnings and clearcutting in BCT treatments was 10–18% higher than in selective thinning. The saw log volumes were at the same level in both treatments.
Abstract | Full text in HTML | Full text in PDF | Author Info

Young, dense forest in Finland and Sweden urgently need to receive first thinning. In such stands, conventional selective thinning methods make the harvester work time consuming and, thus, costly. To make small-sized trees economically competitive as raw material for bioenergy and biorefining, new harvesting technologies and/or thinning methods need to be developed. A potential solution is boom-corridor thinning (BCT), rendering effective cutting work. The aim of this study was to describe and compare the stand structure of two Scots pine stands (Pinus sylvestris L.) and one birch-dominated (Betula pendula Roth with natural downy birch, B. pubescens Ehrh.) stand after BCT and selective thinning at the first thinning phase. Furthermore, simulations were conducted to predict the future stand development after the first thinning treatments. The density of the growing stock was 16–46% higher after BCT treatment than after selective thinning because BCT stands included more small and supressed trees with a dbh < 100 mm. However, the numbers of future crop trees with a dbh > 140 mm per hectare were at the same level in both treatments. The stem volume removal per hectare did not differ between treatments. However, simulation of stand development and intermediate thinning and clearcutting revealed that the total removal volume was 10–18% higher in BCT stands compared to selectively thinned ones. The saw log volumes harvested did, however, not differ between treatments. This study shows that BCT generates stands with higher biodiversity compared to conventional thinning as higher levels of biomass removal can be reached throughout stand rotations.

  • Nuutinen, Natural Resources Institute Finland (Luke), Production systems, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: yrjo.nuutinen@luke.fi (email)
  • Miina, Natural Resources Institute Finland (Luke), Natural resources, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: jari.miina@luke.fi
  • Saksa, Natural Resources Institute Finland (Luke), Natural resources, FI-77600 Suonenjoki, Finland E-mail: timo.saksa@luke.fi
  • Bergström, Swedish University of Agricultural Sciences (SLU), Dept of Forest Biomaterials and Technology, Section of Forest Operations, SE-90183 Umeå, Sweden E-mail: dan.bergstrom@slu.se
  • Routa, Natural Resources Institute Finland (Luke), Production systems, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: johanna.routa@luke.fi
article id 134, category Research article
Dan Bergström, Urban Bergsten, Tomas Nordfjell. (2010). Comparison of boom-corridor thinning and thinning from below harvesting methods in young dense Scots pine stands. Silva Fennica vol. 44 no. 4 article id 134. https://doi.org/10.14214/sf.134
Keywords: bioenergy; comparative time studies; energy wood; geometric thinning; pre-commercial thinnings; systematic thinnings
Abstract | View details | Full text in PDF | Author Info
At present, only a small proportion of the potential extractable bioenergy from young dense forests in Sweden is utilized. The conventional mechanized first thinning systems used in such stands suffer from low productivity, so the operation is only profitable in stands with bigger trees and high standing volumes. Conventional harvesters are used for this operation equipped with accumulating felling heads designed for handling several trees during each crane cycle. In thinning from below the felling and bunching work requires many time-consuming non-linear crane movements to avoid felling or damaging of future crop trees. However, higher productivity can be achieved when trees between strip roads are harvested in about 1 m-wide corridors with a length corresponding to the reach of the crane. We refer to this operation as boom-corridor thinning. The objective of this study was to compare felling and bunching productivity in young dense stands when employing thinning from below or boom-corridor thinning. Experiments were performed using a randomized block design involving between 4400 and 18 600 trees x ha-1 with a corresponding average tree size of 7.2 and 3.2 cm dbh, respectively. Based on the average tree being removed at a dbh of 5.7 cm, the productivity (ODt x PW-hour-1) was significant (almost 16%) higher for the boom-corridor thinning than for thinning from below treatment. At the same time, the time taken for the work element “Crane in-between” (the period between the loaded crane starting to move towards a tree and the felling head rapidly slowing down for positioning) was significantly reduced, by almost 17%. The positive results were achieved even though the operator was new to the method. To achieve a significantly higher efficiency during the felling and bunching operation, development of new harvesting equipment and operating techniques seems crucial.
  • Bergström, Swedish University of Agricultural Sciences, Dept of Forest Resource Management, Section of Planning and Operations Management, Umeå, Sweden E-mail: dan.bergstrom@srh.slu.se (email)
  • Bergsten, Swedish University of Agricultural Sciences, Dept of Forest Resource Management, Section of Planning and Operations Management, Umeå, Sweden E-mail: ub@nn.se
  • Nordfjell, Swedish University of Agricultural Sciences, Dept of Forest Resource Management, Section of Planning and Operations Management, Umeå, Sweden E-mail: tn@nn.se

Category : Research note

article id 23017, category Research note
Yrjö Nuutinen, Jari Miina. (2023). Effect of boom corridor and selective thinning on the post-treatment growth of young Scots pine and birch stands. Silva Fennica vol. 57 no. 2 article id 23017. https://doi.org/10.14214/sf.23017
Keywords: geometrical thinning; systematic thinning; thinning reaction
Highlights: During the 4–5-year post-treatment period, boom corridor thinning did not result in growth and yield losses compared to selective thinning; Within the boom corridor and selective thinning treatments, the increment of trees at the edge of strip roads or corridors was higher than at those trees located in the middle of strip roads and/or corridors.
Abstract | Full text in HTML | Full text in PDF | Author Info
Boom corridor thinning (BCT) is a harvester’s working method, primarily suitable for dense, unmanaged young stands. The method was first studied in Sweden in the early 2000s. In Finland, the idea has been further developed and studied for Finnish forests. The advantage is in the corridor, where the harvester head can move more swiftly, and there is no need to identify trees to grow as much as when using the traditional selective thinning (Sel) method. Moreover, the method can be conducted without cost-intensive pre-clearing of undergrowth, creating post-stands with higher biodiversity. This study is the sequel to a previous study in which experiments on BCT and Sel were established in 2017–2018. The experiments were remeasured 4–5 years after their establishment, and the effect of BCT treatments of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) on the post-treatment growth and growth reaction of individual trees within the treatments was compared to traditional Sel. During the post-treatment period, BCT did not result in growth or yield losses compared to Sel. Within the treatments, the increment of trees at the edge of strip roads or corridors was higher than that of trees located in the middle of strip roads and/or corridors. A longer post-treatment period needs to be studied to analyse the effect of BCT on the total yield and especially the yield of saw logs during the rest of the rotation period.

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles