Current issue: 58(5)
The objective of this investigation was to study the influence of stand density of white birch (Betula pubescens Ehrl.) on the minimum temperatures in the stand during the growing season, and the actual minimum temperatures of the leading shoot of Norway spruce (Picea abies (L.) H. Karst.) seedlings growing in the open. The 40-year-old uniform white birch stand was situated in 142 m above the sea level in Southern Finland. The stand was treated with thinnings of three different densities in 1961.
Air temperature was recorded in four sample plots at heights of 0.1 m, 0.5 m, 1.0 m, 2 m and 4 m. In the stand of moderate density, temperatures were measured at heights of 6.0 m, and in the stand of full density at 6.0 m, 8.0 m and 10.0 m.
The temperature differences between stands of various densities proved to be rather small. Especially the thinnest stand differed very little from the open area. The soil surface has in all cases been warm compared with the higher air layers indicating meadow-fog-type by Geier (1965). On cloudy or windy weather all the temperature profiles in the various stands resembled each other. The difference between the air temperature and temperature of the spruce shoot was greatest at midnight and decreased steadily thereafter.
The problem in using shelter stands for spruce regeneration areas is that optimum shelter stand density is difficult to define. Already a thin shelter stand causes drawbacks to the young seedlings, but in order to be effective enough against early frosts, the shelter stand should be comparatively dense.
The PDF includes a summary in English.