Our preliminary findings indicate that the content of total sulphur and soluble fluorides in needles of the Scots pine (Pinus sylvestris L.) reflects the degree of air pollution with sulphur and fluorine compounds. A project for a map of air pollution in Poland, based on chemical analysis of Scots pine needles, is presented. Results of the total sulphur and soluble fluoride content in 2-year old needles from 15- to 25-year-old trees should yield a picture of air pollution with sulphur and fluorine compounds. The first stage will involve the preparation of a map of the area between the Warsaw and Plock agglomerations. This area will be divided into 10 squares with side dimension of 25 km each. Samples will be taken at 5 different sites in each square and also approximately every 5 km along a straight line between these towns.
Pine forests are common in many European regions. Nonetheless, there are only a few studies on regeneration of plant species populations in nutrient-deficient pine habitats. Ancient temperate forests are perceived to be particularly important objects of environmental conservation, due to their ability to sustain a considerable number of rare and vulnerable species. In this paper, we present indicator species of ancient pine and mixed oak-pine forests, together with their trait profiles. Phytosociological relevés were collected from mature stands in the Masuria and Kurpie regions of central Poland. Forest persistence was determined on the basis of historical maps, with the data set divided into three categories. The indicator value of species was evaluated using Tichý and Chytrý’s phi coefficient. Functional response traits of indicator species were identified. Distinct groups of species with a preference for ancient forests can be determined. The dispersal-related traits significantly distinguish ancient forest indicators from other species found in nutrient-poor forest habitats. Since the low potential for long-distance dispersal hinders the establishment of new plant populations in isolated stands, we stress the need to avoid ancient forest clearance and fragmentation of woodland; afforestation should be located in the vicinity of ancient stands. Moreover, as recent forests have turned out to support several rare plant species, to maintain phytodiversity on a landscape level a mixture of ancient and recent forests, both managed and strictly protected, is needed.
An understanding of the genetic variation of the beech, especially at the edge of its natural distribution, is essential because of the change in natural distribution of the species resulting from changing climatic conditions. The main aim of the study was to determine the level of genetic diversity of European beech at the north-eastern edge of its natural range. The other aim was to check the genetic variation of beech from the two centres, the north and the south of Poland, which were identified in previous findings based on pollen analyses and phenotypic traits. The research material was the progeny of twelve beech provenances. The genetic structure of the populations was determined by ten highly variable microsatellite DNA loci. The results confirmed the high genetic diversity of beech at the north-eastern edge of its natural distribution, which infers the probability of their good adaptation to the changing climate and an extension of the range. Genetic analyses confirmed the existence of two genetic centres for beech in Poland. The populations from south-eastern Poland had a slightly higher diversity than the populations from the north-western area, which may indicate that the colonisation of Poland occurred by two routes. The results are important for creating the borders of the provenance regions and for limiting the transfer of seeds and seedlings. The choice of forest reproductive material, based on the knowledge of genetic diversity, is very important for the stability of future forests.
Given their importance as a resource for many forest organisms, tree cavities were inventoried in the managed pine forests of north-east Poland, in relation to the: 70–100, 101–130 and >130 year age-classes within the clear-cutting system. The densities at which cavities were present was found to depend on forest age, given that stands 70–100 years old were characterised by an average density of 0.62 trees ha–1, while forests older than 130 years reported 3.28 trees ha–1. Stands aged 70–100 years differed from those aged 130+ in having just 0.27 trees ha–1 of cavity trees, as compared with 2.91 trees ha–1. The total volume of cavity trees in stands up to 100 years old was 0.37 m3 ha–1 on average, as compared with 5.42 m3 ha–1 in stands over 130 years old. The cavities created by woodpeckers constituted 76% of all of those found, and included 53% excavated by great spotted woodpeckers (Dendrocopos major L.) and 23% by black woodpeckers (Dryocopus martius L.) The proportion of cavities excavated by D. major was highest in the youngest age class of stands. There, cavities made by D. martius constituted only 8% of the total, as compared with 31% in the oldest stands. The abundance of cavity trees thus differed along an age gradient, though in any event the availability of cavity trees appears to be too limited to provide for the needs of hole-nesting birds. Forest managers must thus take more account than hitherto of the need to protect cavity trees.
English yew (Taxus baccata L.) is a strictly outcrossing and dioecious species whose populations are small and isolated. It is known that sex ratios may vary in natural populations due to local environmental conditions or stochastic events. However, unbalanced sex ratios may have negative impacts on genetic diversity through enhanced genetic drift and inbreeding. The present study represents one of the first attempts to compare the genetic variation at microsatellite loci within and between populations with different gender proportions. Our results indicated that there were no significant correlations between sex ratio and the extent of genetic variation in different populations. All populations exhibited high levels of genetic diversity. Additionally, the genetic structure was characterized separately in male and female individuals. Statistical analyses of the set estimators describing the genetic structure of male and female individuals of T. baccata revealed no significant differences between the two groups. Molecular analysis verified that microsatellite nuclear loci neutrality developed for T. baccata, as there were no significant differences in the genetic variation between males and females and no evidence for any outlier loci using coalescent and hierarchical Bayesian simulations. The results demonstrate that ignoring biased sex ratios in T. baccata populations had no effect on the assessment of genetic differentiation and genetic diversity within and between populations of this species. These results are discussed with regards to the practical application of molecular markers in conservation programs.