The Värriö environmental measurement station has been designed and constructed during 1991 and 1992. The measurement system consists of measurement units for gases (sulphur dioxide, ozone, carbon dioxide), particles, photosynthesis and irradiation. A meteorological station is also included. The preliminary measurement period was started on August, 1991. During the first year (1991–1992) some parts of the system were redeveloped and rebuilt. Full, continuous measurement started in August 1992. The system has been working quite reliably, with good accuracy. The preliminary results show that pollution episodes are observed when the wind direction is from Monchegorsk or Nikel, the main emission sources in Kola Peninsula.
The results of an intercalibration of sulphur analysis by 24 laboratories are evaluated. The analysis was made by one or more of six methods. The following three methods were found to be satisfactory as regards relative speed and reliability: Leco S analysis, X-ray fluorescence, and vacuum ICO emission spectroscopy.
The PDF includes an abstract in English.
The effect of meteorological factors, the total sulphur content of the needles, and SO2 concentration in the ambient air on total peroxidase activity of Scots pine (Pinus sylvestris L.) needles was investigated in material obtained from Southern Finland. The correlation between temperature and total peroxidase activity was highest during the most active growing period. Linear correlation between relative humidity and total peroxidase activity appears to be low. The correlation between atmospheric SO2 concentration and total peroxidase activity was also low and varied inconsistently. The detected low association between the sulphur dioxide pollutant and the total peroxidase activity was assumed to be related to the sensitivity of peroxidase activity, many eco-physiological factors and to the genetic variation in conifers. It is difficult to separate a response due to this pollutant from environmental and genetic factors in a complex coniferous forest. Using total peroxidase activity as a routine indicator of air pollution seems to be unsuitable because of the large sample size required in order to obtain a reliable measurement of the pollutant’s effect under low pollution levels.
The PDF includes a summary in Finnish.
A method to determine sulphur as sulphate has been applied to search for surface concentration of sulphate sulphur on needle samples. The method is based on reducing sulphates as volatile hydrogen sulphide gas by using hydriodic acid. The hydrogen sulphide gas is swept with nitrogen into an absorbent solution. Sulphide ion concentration in solution is then measured using ion selective electrodes.
The method was applied on one to four years old needle samples collected from Scots pine (Pinus sylvestris L.) at 0.9 to 15.9 km distances from a 1,064 MW coal-fired power plant in Southern Finland. Surface sulphate values found in the samples closer than 4 km to the power plant were 50 to 100% higher than a nearly constant background level. No significant variation of values with needle age was found. The advantages of the method compares to other methods for sulphur determination are speed, reasonable sensitivity and low detection limit.
Scanning Electron Microscopy was used to study structural changes in epicuticular vax of Pinus sylvestris L. with time. Changes in the contact angle of water droplets and in cuticular transpiration were also measured. By using material from a polluted and an unpolluted site it was shown that the ageing process occurs faster on polluted air, leading to greater cuticular transpiration and smaller contact angles at polluted sites.
A semi-statistical model is suggested for monitoring injuries of plants for long-time field exposures (months). The model is based on the following assumptions:
1. The concentrations of air pollutants in the atmosphere follow the Johnson SB distribution.
2. The degree of plant injury is proportional to the logarithm of air pollutant dose.
3. No injuries occur below a certain dose level.
4. A dose is defined as the air pollutant concentration multiplied by the duration of exposure raised to an exponent.
Based on the air pollutant frequency distribution a total dose for the exposure period is calculated by integration, and the total dose is related to the observed plant injury by non-linear regression. The model is tested for long-time exposures of sulphur dioxide to transplant lichen in natural environment.
Our preliminary findings indicate that the content of total sulphur and soluble fluorides in needles of the Scots pine (Pinus sylvestris L.) reflects the degree of air pollution with sulphur and fluorine compounds. A project for a map of air pollution in Poland, based on chemical analysis of Scots pine needles, is presented. Results of the total sulphur and soluble fluoride content in 2-year old needles from 15- to 25-year-old trees should yield a picture of air pollution with sulphur and fluorine compounds. The first stage will involve the preparation of a map of the area between the Warsaw and Plock agglomerations. This area will be divided into 10 squares with side dimension of 25 km each. Samples will be taken at 5 different sites in each square and also approximately every 5 km along a straight line between these towns.
Air pollution injury to vegetation often occurs near a fertilizer factory in Central Sweden. The causing incidence often occurs in the winter and the symptoms appear when metabolism starts in the spring. Deciduous and coniferous trees and bushes were injured in the spring of 1979. Samples of Scots pine (Pinus sylvestris L.) needles were analysed for sulphur, total fluorine and nitrogen content, some of them for nitrate and ammonium. All the compounds showed elevated levels, clearly connected with the degree of exposure of the sampling site. The levels were higher in the spring than later in the growing season, indicating involvement in metabolism or leaching. None of the compounds was significantly in excess, although, elevated to an extent to indicate the cause of injury. Most probably the nitrogen compounds were involved. The problems encountered in tracing the causing pollutant, when injury appeared long after the incidence, might be easier solved with regularly used technical monitoring and bioindicator technique.
Grasses Agropyron spicatum Pursh, Lolium perenne L. (S23) and 2-year old Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) were exposed to low SO2 concentrations under field conditions for approximately eleven weeks. SO2 was released continuously via manifold delivery systems, and provided treatment mean concentrations of 0.007 (ambient air), 0.042, 0.106 and 0.198 ppm. The concentrations in each treatment were approximately log-normally distributed, with standard geometric deviations ranging from 2.58 to 3.24. In both grass species, 0.198 ppm SO2 caused substantial reduction of total growth. In L. perenne, this was largely the result of impaired root growth, whereas both shoot and root growth of A. spicatum were reduced. 0.106 ppm SO2 had no significant effect on A. spicatum growth, but reduced root growth of L. perenne. Growth of Douglas fir was reduced in each of the tree highest concentrations, with root growth being markedly diminished, particularly on trees which showed chlorotic and necrotic injury. However, in these trees the shoot and total leaf weights tended to increase at the highest SO2 concentrations, suggesting that in these plants injury to leaves stimulated further shoot growth at the expense of root development.
Information on input of acidifying compounds like SO2 and NOx is necessary to understand effects of acidification. The uptake on NO and NO2 respectively was studied on seedlings and shoots of Scots pine (Pinus sylvestris L.). Experiments were conducted both in laboratory (NO and NO2 respectively) and in the field (NO2) under light and dark conditions. In all three cases there was a linear relationship between the uptake rate and the NOx-concentration. The uptake follows a diurnal pattern i.e. the uptake rate was strongly correlated with the stomatal movements. Uptake rates were converted to deposition rate and the results showed that field exposure with NO2 gave the higher deposition rate.