A method to determine sulphur as sulphate has been applied to search for surface concentration of sulphate sulphur on needle samples. The method is based on reducing sulphates as volatile hydrogen sulphide gas by using hydriodic acid. The hydrogen sulphide gas is swept with nitrogen into an absorbent solution. Sulphide ion concentration in solution is then measured using ion selective electrodes.
The method was applied on one to four years old needle samples collected from Scots pine (Pinus sylvestris L.) at 0.9 to 15.9 km distances from a 1,064 MW coal-fired power plant in Southern Finland. Surface sulphate values found in the samples closer than 4 km to the power plant were 50 to 100% higher than a nearly constant background level. No significant variation of values with needle age was found. The advantages of the method compares to other methods for sulphur determination are speed, reasonable sensitivity and low detection limit.
Increased prices on oil have resulted in the search for alternative energy sources, e.g. coal, peat, biomass, different types of waste. Combustion especially of waste, coal and peat emits large quantities of air pollutants such as heavy metals but also harmful organic substances. Heavy metals are not easily separated from the smoke, and the concentrations are often high in the emissions even with advanced fly-ash separators.
Ecological investigations carried out around a coal burning power plant in Finland using mosses and pine needles as parameters are presented in the paper. Increased concentrations of Pb, Cd, Cr, Ni, Cu and V have been found near the plant. Often a clear gradient was found with increased concentrations at decreased distance from the power plant.
The purpose of the study was to find out the most economical fuel for central heating boilers in different parts of Finland. The most common central heating fuels and boilers used in Finland were compared in the study.
The present consumption of different fuels and the regional distribution of the boilers of a few main types was investigated. The costs were calculated according to the costs level of February 1957. To be able to compare the costs, both variable costs and fixed costs were calculated. The heat output produced annually in the different boilers was studied to divide the fixed costs into costs per heat unit.
Comparison of the total costs per heat unit showed that cost of wood or imported fuels (oil, coke, coal etc.) was about on the same level in the coastal areas close to import harbours, but wood was the cheapest fuel for central heating in inland.
The article includes an abstract in English.
The government of Finland appointed a committee to make a suggestion of measures to be taken to arrange fuel supply during the heating season. The committee drafted also a plan to regulate and govern the fuel economy.
The committee estimated that the total consumption of coal, coke, firewood, waste wood and fuel peat, converted into pine firewood increased from 33.8 million eu.m in piled measure in heating period of 1952-53 to 42.9 million in 1955-56. According to the report, the demand of fuel is met increasingly through imported fuels, such as coal, coke and oil. The change is mainly due by their lower price and technically easy handling compared to domestic fuels.
The committee suggests that the production of domestic fuels, peat and firewood, should be increased and rationalized. In addition, financial support should be targeted to construct hydroelectric plants. Fuel peat industry should be developed further. The use of oil should be promoted, and boilers able to use different kinds of fuel should be constructed. To be prepared in changes in international situation, stocks of fuel are needed.
Fuel shortage during and after the Second World War compelled the Government of Finland to improve the fuel supply. In 1948 the Government appointed a Committee to draft a proposal on use of domestic and imported fuels. Special attention was placed on how to develop use of peat as fuel.
In rural districts, firewood billets and waste wood accounted for 45% of fuel consumption. For other users than the rural population, coal and coke consisted 25%, industrial waste wood 11% and billets 18% of the total consumption in 1938. After the war the use of coal and coke increased and the use of billets decreased.
Due to the decreased demand of billets, their price in the towns fell lower than the production and transport costs from the most remote areas where the wood was harvested. The demand for small sized timber is important for silvicultural reasons, and wood harvesting creates jobs for the rural population, therefore, the Committee proposes that the state supports the production of billets. This could be done by improving the effectiveness of firewood loggings, and by building truck roads and railways.
Small-sized birch is used predominantly as fuel. The Committee considers the growing stock of birch to be the largest unutilized wood reserve. Supported by technological research, it may become a new raw material for sulphate cellulose industry. Use of industrial waste wood as fuel and improvement of heating equipment would improve the competitiveness of fuelwood and peat against other fuels. For the possible interruptions in imports, stocks of foreign fuels should be maintained.
The article includes a summary in English.
Silva Fennica issue 52 includes presentations held in professional development courses, arranged for foresters working in public administration in 1938. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes the principles of charcoal burning in Finland at the time when charcoal had found a new market in ore processing.
The use of imported fuels has increased in Finland, which has resulted in a growing disregard of domestic fuels, primarily firewood, on fuel market. This has affected forest management and economy of forest owners as well as diminishing the working opportunities in the countryside by decreasing the demand of small-sized timber. This investigation studies the fuel problem in the industrial field by a survey sent to all industrial plants in the country.
The different fuels were converted to the calorific value of pine firewood measured in piled cubic meters (p-m3, cu.m.). In 1950 the industry utilized 14.1 million cu.m piled measure of imported and domestic fuels. Of this 47% was domestic fuels and 53% imported fuels. The share of coal was 40%, wood waste almost 30%, and firewood 18%. The relatively small proportion of firewood suggests that it could be possible to increase the industrial demand for firewood. However, it should be noted that industry uses fuel mainly for power production, where imported fuels are highly effective. Forest industry used 2/3 of all domestic fuel.
According to the report, waste wood was cheapest kind of fuel for industry. It was, however, often the plant’s own waste material. The cost of coal at the mill was 60% of the corresponding price of firewood. The location of the industry affects greatly the price relations between domestic and imported fuels. Coal is cheaper close to the harbours and the coastline of the country. The state has supported firewood transportation by lower freight rates for firewood.
The PDF includes a summary in English.
A questionnaire was sent to the steamship owners to investigate the annual fuelwood consumption of the steamships in Finland in 1927‒1929. Most of the steamships used split spillet as fuel, and the share of coal and waste wood remained low. The fuelwood consumption of cargo ships, passenger ships and tugboats was calculated for different kinds of steamships, and by the engine power of the ships and by the fuelwood type. The annual fuelwood consumption of cargo ships was 22,768‒27,390 m3, passenger ships 24,738‒33,616 m3 and tugboats 76,764‒113,791 m3 in 1927‒1929.
The PDF includes a summary in German.