According to the statistics, the fuel wood consumption in Europe has declined since 1925/1929, when the total fuel wood consumption was 144 million m3. In 1960 the consumption was 108 million m3. Because of insufficient statistics in the early years, the drop may even be larger than shown by the figures. The aim of this paper is to assess what part of European fuel wood removals in 1960 could be used for industrial purposes by 1975.
It was estimated that in 1975 the use of fuel wood in Europe will be about 45–55 million m3 less than in 1960 and about 10 million m3 of this amount will consist of coniferous species. It is believed that about 45 million m3 could be transferred to industrial use by 1975, and 55 million m3 is supposed to be the maximum reduction achievable by 1975. The estimates are based on the revised European fuel wood removal figures.
The new European timber trends and prospects study reveals a shortage of small-sized coniferous wood of about 25–43 million m3, depending on whether the exports from Europe are curtailed or not. The decrease of coniferous fuel wood of 10 million m3 could almost entirely be transferred for the use of industry.
A more important question is, is there demand for the extra small-size broadleaved wood. It is important to note that there is no longer any technical limitations on the use of this kind of wood for producing pulp, paper paperboard and wood-based panel products.
Fuelwood is often collected by the farmer and used near the farm. If the wood is to be used in the industry, harvesting and transport costs need to be decreased. However, productivity of the logging and transportation may be significantly improved by cutting the trees into longer lengths and professional harvesting. About 40% of the potential transfer of fuelwood to industrial uses is concentrated in Finland (7 million m3), France (5 million m3), and Italy (7 million m3). Other countries with significant potential shifts could be Romania, Spain and Yugoslavia.
The PDF includes a summary in French, German, Dutch, Russian and Finnish.
The purpose of this investigation is to examine the weight and moisture of split birch fuel wood and to calculate its heat values. The weight was measured of 255 truck loads in six different locations during the winter 1959–1960. Moisture analysis was made of sample specimens collected from the loads.
The dry matter weight of the birch fuel wood was in an average 333 kg/m3 piled measure. The lowest measured weight was 319 and the highest 341 kg/m3 piled measure. The moisture content in the different parts of the pile varies distinctly. Driest wood is found in the middle of the pile. Wood in the top and bottom of the pile have about similar moisture content.
The manner of storage influences the drying process. The moisture content of open piles is 20.5%, of paper-covered piles 19.9% and roofed multiple-piles of split fuel wood 19.3%. The 2-year-old piles were dryer than 1-year-old ones. Higher percentages (25% and 20 %, respectively) than those measured in the study, are recommended for practical use. The heat value of the wood stored in a pile was in average 1,435 Mcal/m3 piled measure, and 1,455 Mcal/m3 piled measure sampled from a truck load.
The PDF includes a summary in English.
The government of Finland appointed a committee to make a suggestion of measures to be taken to arrange fuel supply during the heating season. The committee drafted also a plan to regulate and govern the fuel economy.
The committee estimated that the total consumption of coal, coke, firewood, waste wood and fuel peat, converted into pine firewood increased from 33.8 million eu.m in piled measure in heating period of 1952-53 to 42.9 million in 1955-56. According to the report, the demand of fuel is met increasingly through imported fuels, such as coal, coke and oil. The change is mainly due by their lower price and technically easy handling compared to domestic fuels.
The committee suggests that the production of domestic fuels, peat and firewood, should be increased and rationalized. In addition, financial support should be targeted to construct hydroelectric plants. Fuel peat industry should be developed further. The use of oil should be promoted, and boilers able to use different kinds of fuel should be constructed. To be prepared in changes in international situation, stocks of fuel are needed.
The aim of this treatise is to describe forests owned by timber companies, their area and position, the quality of forests, the condition of the forests, and fellings carried out during the World War II.
Area of the company-owned forest was 1,95 million hectares, 1,64 million hectares of which was productive and 0,31 hectares inferior forest soil, not including the areas lost after the war. Most of the forests were situated in remote regions. Average volume of the tree stands was slightly larger than in farm-owned forests. Fellings counted for 84% of the growth of the forests.
During the war the state set felling quotas for both company, private and state forests. It was widely discussed how well they were met by the different owner groups. According to the statistics, the companies had followed relatively closely their cutting plans in peace years. Cuttings were highest in 1939, when the war begun. In the war years 1940-43, lack of workforce, horses and cars for transport complicated logging. The fellings increased again during truce after Winter War. Especially demand for small timber increased during the war. Felling of firewood increased in all the owner groups, in particular in the private forests that were situated near settlements. in general fellings were higher in forests that were easiest to reach.
During the war the companies acquired timber more from their own forests. The fellings from company forests were in war years 70% of those in peace years. The article concludes that companies fulfilled the requirements as well as it was possible in the circumstances.
The article includes an abstract in English.
Wood consumption in Finland in 1938-1939 was studied by investigating the wood consumption of aprroximately 2,000 farms. One of the surveys connected to the investigation studied fireplaces and heating equipment in rural districts, and recorded the types of fireplaces in the farms.
The majority of the rural fireplaces are rather old-fashioned and the technically best equipment are rare. The fireplaces in Eastern and Northern Finland are often more primitive than in Western and Southern Finland.
In Western Finland, where hard bread is common, the baking oven is lit 30-50 times a year. In Eastern Finland, where soft bread is baked, the oven is lit about 200 times a year. The sauna i heated about 40 times a year in the west, and 80 times a year in the east.
The PDF includes a summary in English.
The use of imported fuels has increased in Finland, which has resulted in a growing disregard of domestic fuels, primarily firewood, on fuel market. This has affected forest management and economy of forest owners as well as diminishing the working opportunities in the countryside by decreasing the demand of small-sized timber. This investigation studies the fuel problem in the industrial field by a survey sent to all industrial plants in the country.
The different fuels were converted to the calorific value of pine firewood measured in piled cubic meters (p-m3, cu.m.). In 1950 the industry utilized 14.1 million cu.m piled measure of imported and domestic fuels. Of this 47% was domestic fuels and 53% imported fuels. The share of coal was 40%, wood waste almost 30%, and firewood 18%. The relatively small proportion of firewood suggests that it could be possible to increase the industrial demand for firewood. However, it should be noted that industry uses fuel mainly for power production, where imported fuels are highly effective. Forest industry used 2/3 of all domestic fuel.
According to the report, waste wood was cheapest kind of fuel for industry. It was, however, often the plant’s own waste material. The cost of coal at the mill was 60% of the corresponding price of firewood. The location of the industry affects greatly the price relations between domestic and imported fuels. Coal is cheaper close to the harbours and the coastline of the country. The state has supported firewood transportation by lower freight rates for firewood.
The PDF includes a summary in English.
In the present investigation, the problems connected to demand of firewood are dealt with by studying the fuel markets of the three biggest towns in Finland – Helsinki, Turku and Tampere as well as those of Vaasa. The purpose of the investigation was to study the firewood supply areas in two time periods, in 1933-1939 and in 1945-1947, after the Second World War.
Railway and shipping were the most important ways for transporting firewood in 1933-1939. Towards the end of the period, road transport increased especially in Turku and in Vaasa. In 1945-47 almost 90% of the firewood transported to Helsinki, 60% to Tampere and Turku, and over 50% of the firewood transpors to Vaasa were carried by rail. One factor supporting rail transport was that the tariff policy of the State Railways gave preference to firewood transports.
The supply areas increased markedly from 1933-1939 to 1945-1947. Supply of firewood near the towns in the southern, southwestern and western parts of the country was small. Also, pulp industry began to use small-sized timber in 1930s, which increased competition of the wood. Coal and coke began to replace firewood in the 30s, but their use decreased during and after the war due to supply shortage.
The PDF includes a summary in English.
In Finland, transportation of wood by vessels has decreased, but is still an important mode of transport especially for firewood. In 1941-1947, nearly 25% of the firewood procured by the State Fuel Board was transported by vessels. This investigation concentrates on loading of wood into barges, since the share of wages of total expenses is greatest in this phase. The loading work amounts to nearly 40% of the total wages.
Two methods of loading barges are used in Finland: loading from the shore and truck loading. This study concentrates on the more common method, loading from the shore. A time study was conducted on the different stages of loading and piling wood into barges, most of which is done by hand. Most time-consuming part of the work is transporting the logs to the barge with a wheelbarrow, comprising over 40% of the working time. Time required for loading firewood is almost twice as much as loading pulp wood. Recommendations for loading places and organization of work are given in the article to improve the efficiency of the work.
The PDF includes a summary in English.
This paper deals with fuelwood consumption in the city of Monrovia (Liberia) in 1965. Buyers of fuelwood were interviewed at market places, relevant data were recorded, and the average size of fuelwood bundles was measured by applying Archimedes Law.
The results showed that the annual average consumption of fuelwood per caput was 1.3 solid m3, and by household 6.5–6.6 solid m3. The average annual per caput expenditure on fuelwood was $ 9.7. This corresponds to a household of about 5 persons and means a household (family) expenditure of slightly less than $ 50 per annum, which is about 8% of the total household costs. Applying the Monrovia data to the whole of Liberia, it was estimated that fuelwood consumption in the whole country was 1.62 million m3 in 1965.
The PDF includes a summary in Finnish.