The time consumption (TC) of pre-commercial thinning (PCT) varies greatly among sites, stands and forest workers. The TC in PCT is usually estimated by field-assessed work difficulty factors. In this study, a linear mixed model for the TC in PCT was prepared by utilizing forest resources data (FRD). The modelling data included 11 848 and validation data included 3035 worksites with TC information recorded by forest workers within the period of 2008–2018. The worksites represented a range of site and stand conditions across a broad geographical area in Finland. Site and stand characteristics and previous management logically explained the TC in PCT. The more fertile the site, the more working time was needed in PCT. On sites of medium fertility, TC in the initial PCT increased with stand age by 0.5 h ha–1 yr–1. Site wetness increased the TC. PCT in summer was more time consuming than in spring. Small areas were more time consuming to PCT per hectare than larger ones. The between-forest worker variation involved in the TC was as high as 35% of the variation unexplained by the TC model. The coefficient of determination in validation data was 19.3%, RMSE 4.75 h ha–1 and bias –1.6%. The TC model based on FRD was slightly less precise than the one based on field-assessed work difficulty factors (removal quantity and type and terrain difficulty): RMSE 4.9 h ha–1 vs. 4.1 h ha–1 (52% vs. 43%). The TC model could be connected to forest information systems where it would facilitate the predictions of the labour costs of PCT without field-assessing work difficulty factors.
The pulse density of airborne Light Detection and Ranging (LiDAR) is increasing due to technical developments. The trade-offs between pulse density, inventory costs, and forest attribute measurement accuracy are extensively studied, but the possibilities of high-density airborne LiDAR in stream extraction and soil wetness mapping are unknown. This study aimed to refine the best practices for generating a hydrologically conditioned digital elevation model (DEM) from an airborne LiDAR -derived 3D point cloud. Depressionless DEMs were processed using a stepwise breaching-filling method, and the performance of overland flow routing was studied in relation to a pulse density, an interpolation method, and a raster cell size. The study area was situated on a densely ditched forestry site in Parkano municipality, for which LiDAR data with a pulse density of 5 m–2 were available. Stream networks and a topographic wetness index (TWI) were derived from altogether 12 DEM versions. The topological database of Finland was used as a ground reference in comparison, in addition to 40 selected main flow routes within the catchment. The results show improved performance of overland flow modeling due to increased data density. In addition, commonly used triangulated irregular networks were clearly outperformed by universal kriging and inverse-distance weighting in DEM interpolation. However, the TWI proved to be more sensitive to pulse density than an interpolation method. Improved overland flow routing contributes to enhanced forest resource planning at detailed spatial scales.