Current issue: 58(4)

Under compilation: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'interpolation'

Category : Article

article id 5637, category Article
Janne Uuttera, Harri Hyppänen. (1997). Relationship between forest management planning units and spatial distribution of forest habitat components in Koli National Park. Silva Fennica vol. 31 no. 4 article id 5637. https://doi.org/10.14214/sf.a8539
Keywords: Finland; forest management planning; forest habitat distribution; Geographic Information Systems; kriging-interpolation; Koli National park
Abstract | View details | Full text in PDF | Author Info

This study examined the relationships between forest management planning units and patches formed by forest habitat components. The test area used was a part of Koli National Park in North Karelia, eastern Finland. Forest management planning units (i.e. forest compartments) were defined by using a traditional method of Finnish forestry which applies aerial photographs and compartment-wise field inventory. Patches of forest habitat components were divided according to subjective rules by using a chosen set of variables depicting the edaphic features and vegetation of a forest habitat. The spatial distribution of the habitat components was estimated with the kriging-interpolation based on systematically located sample plots. The comparisons of the two patch mosaics were made by using the standard tools of GIS. The results of the study show that forest compartment division does not correlate very strongly with the forest habitat pattern. On average, the mean patch size of the forest habitat components is greater and the number of these patches lower compared to forest compartment division. However, if the forest habitat component distribution had been considered, the number of the forest compartments would have at least doubled after intersection.

  • Uuttera, E-mail: ju@mm.unknown (email)
  • Hyppänen, E-mail: hh@mm.unknown
article id 5496, category Article
Aatos Lahtinen. (1993). On the construction of shape preserving taper curves. Silva Fennica vol. 27 no. 1 article id 5496. https://doi.org/10.14214/sf.a15657
Keywords: interpolation; monotony; shape preserving; quadratic spline; taper algorithm; taper curves
Abstract | View details | Full text in PDF | Author Info

There exists an algorithm for construction interpolating quadratic splines which preserves the monotony of the data. The taper curves formed with this algorithm, QO-splines, have many good qualities when a sufficient number of measured diameters of a tree is available. In fact, they may even be superior to certain shape preserving taper curves, MR-splines. This algorithm can be modified to preserve also the shape of the data. In the present paper, the quality of taper curves constructed by a new shape preserving from of the algorithm is examined. For this purpose, taper curves are formed for different sets of measurements and their properties are compared with the ones of QO-splines and MR-splines. The results indicate that these new shape-preserving taper curves are in general better than QO-splines and MR-splines even if the differences may be small in many cases. The superiority is the clearer the less measurements are available.

The PDF includes an abstract in Finnish.

  • Lahtinen, E-mail: al@mm.unknown (email)
article id 5187, category Article
Fuhe Luo. (1983). Determination of stem value. Silva Fennica vol. 17 no. 3 article id 5187. https://doi.org/10.14214/sf.a15170
Keywords: Pinus sylvestris; Scots pine; modelling; pulpwood; saw log; stem value; taper curve model; bark model; cubic spline interpolation
Abstract | View details | Full text in PDF | Author Info

A dynamic programming approach toward stem value estimation for standing Scots pine (Pinus sylvestris L.) trees was developed. The determination of the saw log value was based on the sawing pattern and on the final products composition. The combination of taper curve models and bark models providing taper curves both over bark and under bark, which constituted the basis of the optimum stem scaling. A computer program was developed to determine the optimum log sequence of the stem aiming at maximizing the value of the final products. To examine the reliability of the computation system, 445 Scots pine sample trees from 29 stands were used as a test material. The stem values of sample trees were calculated in two ways: 1) with 12 measured diameters, and 2) with 12 estimated diameters derived from measured tree characteristics. In both cases the values of the intermediate diameters were calculated via cubic spline interpolation.

The PDF includes a summary in Finnish.

  • Luo, E-mail: fl@mm.unknown (email)

Category : Research article

article id 282, category Research article
Annika Kangas, Lauri Mehtätalo, Matti Maltamo. (2007). Modelling percentile based basal area weighted diameter distribution. Silva Fennica vol. 41 no. 3 article id 282. https://doi.org/10.14214/sf.282
Keywords: stand structure; diameter distribution; prediction; interpolation
Abstract | View details | Full text in PDF | Author Info
In percentile method, percentiles of the diameter distribution are predicted with a system of models. The continuous empirical diameter distribution function is then obtained by interpolating between the predicted values of percentiles. In Finland, the distribution is typically modelled as a basal-area weighted distribution, which is transformed to a traditional density function for applications. In earlier studies it has been noted that when calculated from the basal-area weighted diameter distribution, the density function is decreasing in most stands, especially for Norway spruce. This behaviour is not supported by the data. In this paper, we investigate the reasons for the unsatisfactory performance and present possible solutions for the problem. Besides the predicted percentiles, the problems are due to implicit assumptions of diameter distribution in the system. The effect of these assumptions can be somewhat lessened with simple ad-hoc methods, like increasing new percentiles to the system. This approach does not, however, utilize all the available information in the estimation, namely the analytical relationships between basal area, stem number and diameter. Accounting for these, gives further possibilities for improving the results. The results show, however, that in order to achieve further improvements, it would be recommendable to make the implicit assumptions more realistic. Furthermore, height variation within stands seems to have an important contribution to the uncertainty of some forest characteristics, especially in the case of sawnwood volume.
  • Kangas, Department of Forest Resources Management, P.O.Box 27, FI-00014 University of Helsinki, Finland E-mail: ak@nn.fi (email)
  • Mehtätalo, University of Joensuu, Faculty of Forestry, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: lm@nn.fi
  • Maltamo, University of Joensuu, Faculty of Forestry, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: mm@nn.fi

Category : Research note

article id 10557, category Research note
Mikko T. Niemi. (2021). Improvements to stream extraction and soil wetness mapping within a forested catchment by increasing airborne LiDAR data density – a case study in Parkano, western Finland. Silva Fennica vol. 55 no. 5 article id 10557. https://doi.org/10.14214/sf.10557
Keywords: remote sensing; interpolation; laser scanning; digital elevation model conditioning; overland flow routing; soil drainage; wetness index
Highlights: Overland flow routing can be improved with high-density airborne LiDAR data; Kriging and inverse-distance weighting outperformed triangulated irregular networks in DEM interpolation; A hybrid breaching-filling workflow performed well for DEM conditioning in the Finnish landscape; Enhanced stream extraction and soil wetness mapping contribute to multi-purpose precision forestry.
Abstract | Full text in HTML | Full text in PDF | Author Info

The pulse density of airborne Light Detection and Ranging (LiDAR) is increasing due to technical developments. The trade-offs between pulse density, inventory costs, and forest attribute measurement accuracy are extensively studied, but the possibilities of high-density airborne LiDAR in stream extraction and soil wetness mapping are unknown. This study aimed to refine the best practices for generating a hydrologically conditioned digital elevation model (DEM) from an airborne LiDAR -derived 3D point cloud. Depressionless DEMs were processed using a stepwise breaching-filling method, and the performance of overland flow routing was studied in relation to a pulse density, an interpolation method, and a raster cell size. The study area was situated on a densely ditched forestry site in Parkano municipality, for which LiDAR data with a pulse density of 5 m–2 were available. Stream networks and a topographic wetness index (TWI) were derived from altogether 12 DEM versions. The topological database of Finland was used as a ground reference in comparison, in addition to 40 selected main flow routes within the catchment. The results show improved performance of overland flow modeling due to increased data density. In addition, commonly used triangulated irregular networks were clearly outperformed by universal kriging and inverse-distance weighting in DEM interpolation. However, the TWI proved to be more sensitive to pulse density than an interpolation method. Improved overland flow routing contributes to enhanced forest resource planning at detailed spatial scales.

  • Niemi, Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland E-mail: mikko.t.niemi@helsinki.fi (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles